Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Multiplexed locus-specific analysis of DNA methylation in single cells

Abstract

This protocol details a method for measuring the DNA methylation state of multiple target sites in single cells, otherwise known as single-cell restriction analysis of methylation (SCRAM). The basic steps include isolating and lysing single cells, digesting genomic DNA with a methylation-sensitive restriction endonuclease (MSRE) and amplification of multiple targets by two rounds of PCR to determine the methylation status of target sites. The method can reliably and accurately detect the methylation status of multiple target sites in each single cell, and it can be completed in a relatively short time (<2 d) at low cost. Consequently, the method may be preferable over whole-genome methods in applications requiring highly reliable and cost-effective coverage of specific target sites in all cells from a sample and in cases when the DNA methylation states of single CpG sites are representative of the methylation status of corresponding regions of interest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assay principle and workflow for the SCRAM assay.
Figure 2: Workflow for performing qPCR analysis on the Fluidigm 48.48 Dynamic Array and visualization of results.

Similar content being viewed by others

References

  1. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Goll, M.G. & Bestor, T.H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Messerschmidt, D.M., Knowles, B.B. & Solter, D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 28, 812–828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smallwood, S.A. et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat. Genet. 43, 811–814 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Santos, F., Hendrich, B., Reik, W. & Dean, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Smith, Z.D. et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bock, C. et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat. Biotechnol. 28, 1106–1114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827–1831 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eckhardt, F. et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38, 1378–1385 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Colella, S., Shen, L., Baggerly, K.A., Issa, J.P.J. & Krahe, R. Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques 35, 146–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Herman, J.G., Graff, J.R., Myöhänen, S., Nelkin, B.D. & Baylin, S.B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiong, Z. & Laird, P.W. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 25, 2532–2534 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eads, C.A. et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 28, e32 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ehrich, M. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl. Acad. Sci. USA 102, 15785–15790 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bibikova, M. et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 16, 383–393 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Down, T.A. et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol. 26, 779–785 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khulan, B. et al. Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res. 16, 1046–1055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Melnikov, A.A., Gartenhaus, R.B., Levenson, A.S., Motchoulskaia, N.A. & Levenson, V.V. MSRE-PCR for analysis of gene-specific DNA methylation. Nucleic Acids Res. 33, e93 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Oakes, C.C., La Salle, S., Robaire, B. & Trasler, J.M. Evaluation of a quantitative DNA methylation analysis technique using methylation-sensitive/dependent restriction enzymes and real-time PCR. Epigenetics 1, 146–152 (2006).

    Article  PubMed  Google Scholar 

  24. Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smallwood, S.A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511, 606–610 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. El Hajj, N. et al. Limiting dilution bisulfite (pyro) sequencing reveals parent-specific methylation patterns in single early mouse embryos and bovine oocytes. Epigenetics 6, 1176–1188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gomez, D., Shankman, L.S., Nguyen, A.T. & Owens, G.K. Detection of histone modifications at specific gene loci in single cells in histological sections. Nat. Methods 10, 171–177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lorthongpanich, C. et al. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science 341, 1110–1112 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Kantlehner, M. et al. A high-throughput DNA methylation analysis of a single cell. Nucleic Acids Res. 39, e44 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferguson-Smith, A.C. Genomic imprinting: the emergence of an epigenetic paradigm. Nat. Rev. Genet. 12, 565–575 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Suter, C.M., Martin, D.I. & Ward, R.L. Germline epimutation of MLH1 in individuals with multiple cancers. Nat. Genet. 36, 497–501 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Sermon, K., Van Steirteghem, A. & Liebaers, I. Preimplantation genetic diagnosis. Lancet 363, 1633–1641 (2004).

    Article  PubMed  Google Scholar 

  34. Barrera, V. & Peinado, M.A. Evaluation of single CpG sites as proxies of CpG island methylation states at the genome scale. Nucleic Acids Res. 40, 11490–11498 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hansen, K.D. et al. Increased methylation variation in epigenetic domains across cancer types. Nat. Genet. 43, 768–775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Diercks, A., Kostner, H. & Ozinsky, A. Resolving cell population heterogeneity: real-time PCR for simultaneous multiplexed gene detection in multiple single-cell samples. PLoS ONE 4, e6326 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Roberts, R.J., Vincze, T., Posfai, J. & Macelis, D. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 38, D234–D236 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Peixoto, A., Monteiro, M., Rocha, B. & Veiga-Fernandes, H. Quantification of multiple gene expression in individual cells. Genome Res. 14, 1938–1947 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanchez-Freire, V., Ebert, A.D., Kalisky, T., Quake, S.R. & Wu, J.C. Microfluidic single-cell real-time PCR for comparative analysis of gene expression patterns. Nat. Protoc. 7, 829–838 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Shapiro, H.M. Practical Flow Cytometry (John Wiley & Sons, 2005).

  41. Yin, H. & Marshall, D. Microfluidics for single cell analysis. Curr. Opin. Biotechnol. 23, 110–119 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Manipulating the Mouse Embryo: a Laboratory Manual (Cold Spring Harbor Laboratory Press, 2003).

  43. Suarez-Quian, C.A. et al. Laser capture microdissection of single cells from complex tissues. Biotechniques 26, 328–335 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Visiting Investigator Programme grant (project nos. 092 110 0080 and 1235e00049) from the Joint Council Office of the Singapore Agency for Science, Technology and Research, a Career Development Award (to L.F.C., project no. 14302FG095) from the Joint Council Office of the Singapore Agency for Science, Technology and Research and by the Singapore Institute of Molecular and Cell Biology.

Author information

Authors and Affiliations

Authors

Contributions

L.F.C., S.R.Q., W.F.B. and D.M.M. have contributed to the development of the SCRAM assay. L.F.C. wrote the manuscript with assistance from W.F.B. and D.M.M.

Corresponding authors

Correspondence to William F Burkholder or Daniel M Messerschmidt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Primer organization layout.

The high-throughput nature of the assay requires systematic primer organization. We pre-aliquot 50 µM primer mixes as depicted: For each locus/target (1, 2,..., 24) the two primer combinations (forward-short/reverse [green wells] and forward-long/reverse [blue wells]) are arranged pairwise on a 96-well plate. Each row (A-D) is then systematically transferred to the Assay Inlet ports of the Fluidigm array. Photo courtesy of Fluidigm Corporation.

Supplementary Figure 2 Melting curve analysis.

An exemplary melting curve analysis showing specific amplification in most of the single cell samples (blue arrowhead) and nonspecific amplification in a single sample (red arrowhead).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheow, L., Quake, S., Burkholder, W. et al. Multiplexed locus-specific analysis of DNA methylation in single cells. Nat Protoc 10, 619–631 (2015). https://doi.org/10.1038/nprot.2015.041

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.041

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing