Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Antibody-based detection of protein phosphorylation status to track the efficacy of novel therapies using nanogram protein quantities from stem cells and cell lines

Abstract

This protocol describes a highly reproducible antibody-based method that provides protein level and phosphorylation status information from nanogram quantities of protein cell lysate. Nanocapillary isoelectric focusing (cIEF) combines with UV-activated linking chemistry to detect changes in phosphorylation status. As an example application, we describe how to detect changes in response to tyrosine kinase inhibitors (TKIs) in the phosphorylation status of the adaptor protein CrkL, a major substrate of the oncogenic tyrosine kinase BCR-ABL in chronic myeloid leukemia (CML), using highly enriched CML stem cells and mature cell populations in vitro. This protocol provides a 2.5 pg/nl limit of protein detection (<0.2% of a stem cell sample containing <104 cells). Additional assays are described for phosphorylated tyrosine 207 (pTyr207)-CrkL and the protein tyrosine phosphatase PTPRC/CD45; these assays were developed using this protocol and applied to CML patient samples. This method is of high throughput, and it can act as a screen for in vitro cancer stem cell response to drugs and novel agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow from patient sample collection to data analysis.
Figure 2: Assay plate design.
Figure 3: Assay development process for CrkL antibody.
Figure 4: Assay development process for pTyr207-CrkL antibody.
Figure 5: Chemiluminescence data for DAS and IM drug treatments displaying phosphorylation profile shifts from control.

Similar content being viewed by others

References

  1. O'Neill, R.A. et al. Isoelectric focusing technology quantifies protein signaling in 25 cells. Proc. Natl. Acad. Sci. USA 103, 16153–16158 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fan, A.C. et al. Nanofluidic proteomic assay for serial analysis of oncoprotein activation in clinical specimens. Nat. Med. 15, 566–571 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maiso, P. et al. Defining the role of TORC1/2 in multiple myeloma. Blood 118, 6860–6870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kentsis, A. et al. Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia. Nat. Med. 18, 1118–1122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Williamson, A.J.K. et al. A specific PTPRC/CD45 phosphorylation event governed by stem cell chemokine CXCL12 regulates primitive hematopoietic cell motility. Mol. Cell. Proteom. 12, 3319–3329 (2013).

    Article  CAS  Google Scholar 

  6. Brown, S. et al. Monocyte-derived dendritic cells from chronic myeloid leukaemia have abnormal maturation and cytoskeletal function that is associated with defective localisation and signalling by normal ABL1 protein. Eur. J. Haematol. 93, 96–102 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J. & Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Prince, M. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 104, 973–981 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7, 233–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Sanz, M., Burnett, A., Lo-Coco, F. & Lowenberg, B. FLT3 inhibition as a targeted therapy for acute myeloid leukemia. Curr. Opin. Oncol. 21, 594–600 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Verstovsek, S. Therapeutic potential of JAK2 inhibitors. Hematol. Am. Soc. Hematol. Educ. Prog. 2009, 636–642 (2009).

    Article  Google Scholar 

  13. Rowley, J.D. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973).

    Article  CAS  PubMed  Google Scholar 

  14. Groffen, J. et al. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36, 93–99 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Druker, B.J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl–positive cells. Nat. Med. 2, 561–566 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Gambacorti-Passerini, C. et al. Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL+ leukemic cells and induces apoptosis. Blood Cells Mol. Dis. 23, 380–394 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Hamilton, A. et al. BCR-ABL activity and its response to drugs can be determined in CD34+ CML stem cells by CrkL phosphorylation status using flow cytometry. Leukemia 20, 1035–1039 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Copland, M. et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 107, 4532–4539 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Hochhaus, A. et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 23, 1054–1061 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Hochhaus, A. et al. Favorable long-term follow-up results over 6 years for response, survival, and safety with imatinib mesylate therapy in chronic-phase chronic myeloid leukemia after failure of interferon-α treatment. Blood 111, 1039–1043 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. O'Hare, T., Zabriskie, M.S., Eiring, A.M. & Deininger, M.W. Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nat. Rev. Cancer 12, 513–526 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Graham, S.M. et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571. Blood 99, 319–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Holtz, M.S. Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood 99, 3792–3800 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Mahon, F.X. et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 11, 1029–1035 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Chu, S. et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood 118, 5565–5572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rousselot, P. et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 109, 58–60 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Druker, B.J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355, 2408–2417 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Addona, T.A. et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol. 27, 633–641 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hjelle, S.M. et al. Clinical proteomics of myeloid leukemia. Genome Med. 2, 41 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. de Jong, R., ten Hoeve, J., Heisterkamp, N. & Groffen, J. Tyrosine 207 in CRKL is the BCR/ABL phosphorylation site. Oncogene 14, 507–513 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Seo, J.H. et al. A specific need for CRKL in p210BCR-ABL-induced transformation of mouse hematopoietic progenitors. Cancer Res. 70, 7325–7335 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Konig, H. et al. Effects of dasatinib on SRC kinase activity and downstream intracellular signaling in primitive chronic myelogenous leukemia hematopoietic cells. Cancer Res. 68, 9624–9633 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oda, T. et al. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J. Biol. Chem. 269, 22925–22928 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, X. et al. Constrained selected reaction monitoring: quantification of selected post-translational modifications and protein isoforms. Methods 61, 304–312 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maxwell, S.A. et al. Analysis of p210bcr-abl tyrosine protein kinase activity in various subtypes of Philadelphia chromosome-positive cells from chronic myelogenous leukemia patients. Cancer Res. 47, 1731–1739 (1987).

    CAS  PubMed  Google Scholar 

  36. Copland, M., Hamilton, A. & Holyoake, T.L. Response: conventional western blotting techniques will not reliably quantify p210 BCR-ABL. Blood 109, 1336 (2007).

    Article  CAS  Google Scholar 

  37. Bendall, S.C. & Nolan, G.P. From single cells to deep phenotypes in cancer. Nat. Biotechnol. 30, 639–647 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Irish, J.M. et al. Single-cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118, 217–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Bendall, S.C., Nolan, G.P., Roederer, M. & Chattopadhyay, P.K. A deep profiler's guide to cytometry. Trends Immunol. 33, 323–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hamilton, A., Alhashimi, F., Myssina, S., Jorgensen, H.G. & Holyoake, T.L. Optimization of methods for the detection of BCR-ABL activity in Philadelphia-positive cells. Exp. Hematol. 37, 395–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Protein Simple, Inc. Application Brief, Vol. 1023 http://www.proteinsimple.com/technical_library.html?product=simplewestern&def_list=list (Protein Simple, 2010).

  42. Hamilton, A. et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 119, 1501–1511 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hornbeck, P.V. et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 40, D261–D270 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Konopka, J.B., Watanabe, S.M. & Witte, O.N. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37, 1035–1042 (1984).

    Article  CAS  PubMed  Google Scholar 

  45. Golub, T.R., Barker, G.F., Lovett, M. & Gilliland, D.G. Fusion of PDGF receptor β to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77, 307–316 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Cools, J. et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med. 348, 1201–1214 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Morris, S.W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263, 1281–1284 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Nagata, H. et al. Identification of a point mutation in the catalytic domain of the proto-oncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc. Natl. Acad. Sci. USA 92, 10560–10564 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ziegler, S. et al. A novel protein kinase D phosphorylation site in the tumor suppressor Rab interactor 1 is critical for coordination of cell migration. Mol. Biol. Cell 22, 570–580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shah, N.P. et al. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell 14, 485–493 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Young, M.A. et al. Structure of the kinase domain of an imatinib-resistant Abl mutant in complex with the Aurora kinase inhibitor VX-680. Cancer Res. 66, 1007–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Zipfel, P.A., Zhang, W., Quiroz, M. & Pendergast, A.M. Requirement for Abl kinases in T cell receptor signaling. Curr. Biol. 14, 1222–1231 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Uemura, N. & Griffin, J.D. The adapter protein Crkl links Cbl to C3G after integrin ligation and enhances cell migration. J. Biol. Chem. 274, 37525–37532 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Senechal, K., Heaney, C., Druker, B. & Sawyers, C.L. Structural requirements for function of the Crkl adapter protein in fibroblasts and hematopoietic cells. Mol. Cell Biol. 18, 5082–5090 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nichols, G.L. et al. Identification of CRKL as the constitutively phosphorylated 39-kDa tyrosine phosphoprotein in chronic myelogenous leukemia cells. Blood 84, 2912–2918 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. ten Hoeve, J., Arlinghaus, R.B., Guo, J.Q., Heisterkamp, N. & Groffen, J. Tyrosine phosphorylation of CRKL in Philadelphia+ leukemia. Blood 84, 1731–1736 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Leukaemia and Lymphoma Research UK (08004 to F.P., M.T.S. and T.L.H.), Cancer Research UK (C11074/A11008 to F.P., M.T.S. and T.L.H.) and the Chief Scientist Office (CZB/4/690 to F.P., M.T.S. and T.L.H.), and also by the Glasgow and Manchester Experimental Cancer Medicine Centres, which are funded by Cancer Research UK and the Chief Scientist Office in Scotland.

Author information

Authors and Affiliations

Authors

Contributions

A.D.W. and T.L.H. devised the study; M.A.-O. performed the experimental and study design and wrote the manuscript with A.D.W.; A.P. contributed to study design and instrument setup; F.P. and M.T.S. prepared clinical material; A.J.W. provided the Src inhibitor; and all authors contributed experimental methods and reviewed the manuscript.

Corresponding author

Correspondence to Anthony D Whetton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 CD45 assay development.

Representative trace for total-CD45 (black) and pCD45 (red). b, LOD curve for CD45. c, UV titration for CD45 using total antibody, error bars S.E.M (n=3 technical replicate).

Supplementary Figure 2 Lambda phosphatase treatment of HL60 and K562 cell lysates.

Assay plate design and results created using Compass software assay and analysis perspectives respectively. a, layout of samples, antibodies and reagents in 384-well plate format b, detailed description of samples and antibodies applied to plate designed in (a). c, representative differences in total CrkL spectra resulting from lambda phosphatase (λp) treatment, K562-NDC (black), K562-NDC-λp (green), K562-IM 5µM-λp (blue) and K562-DAS 150nM-λp (red).

Supplementary Figure 3 Spectra mismatching and poor ladder detection.

Assay data showing total CrkL antibody probed against K562 cell lysate with no TKI reatment. Spectra shown represent technical replicates from the same sample. a, mismatched data example; correct standard ladder pI associations applied to the black trace, and incorrect associations applied to the blue trace. Red dotted lines indicate matching peaks and the extent of peak offset in the blue trace as a result of poor ladder detection. b, manual alteration of this error results in perfect alignment.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 927 kb)

Poor separation; sample salt content > 150 mM.

Video showing the effect on protein separation with cIEF when using clinical samples prepared in a high ionic strength buffer (n = 4 biological samples, loaded in triplicate). (MOV 1916 kb)

Good separation; sample salt content <150 mM.

Video showing the effect on protein separation with cIEF when using clinical samples prepared in a low ionic strength buffer (n = 4 biological samples, loaded in triplicate). (MOV 1402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aspinall-O'Dea, M., Pierce, A., Pellicano, F. et al. Antibody-based detection of protein phosphorylation status to track the efficacy of novel therapies using nanogram protein quantities from stem cells and cell lines. Nat Protoc 10, 149–168 (2015). https://doi.org/10.1038/nprot.2015.007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.007

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing