Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish

Abstract

Here we present a protocol for the conversion of eGFP-transgenic zebrafish lines into lines expressing Gal4 from the same locus. This conversion allows the in-depth analysis of the former eGFP-expressing cell population; with the Gal4-upstream activating sequence (UAS) system, diverse UAS transgenes can be transactivated. Site-specific targeting of the gene encoding eGFP is achieved using the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system. A single-guide RNA (sgRNA) that targets eGFP is injected into embryos together with a donor vector containing an optimized version of Gal4 (KalTA4) to trigger integration of the donor into the targeted eGFP genomic location. To enable screening for successful integration events, injection is performed in a UAS:RFP transgenic background; fish showing mosaic eGFP-to-RFP conversion are raised to adulthood. The progeny of these adult fish are then screened for stable germline transmission, and converted progeny are used to generate stable lines. We have been able to generate two stably converted transgenic lines within 4 months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A diagram of CRISPR/Cas9-mediated conversion of an eGFP-transgenic line into an eGFPbait-E2A-KalTA4 transgenic line.
Figure 2
Figure 3: Two different strategies for targeting endogenous exons.
Figure 4: Analysis of a stably converted transgenic line.
Figure 5: Representative results from three eGFP-transgenic lines with examples of mosaic RFP expression in the former eGFP expression domain.
Figure 6: A representative gel of in vitro–transcribed mRNA encoding Cas9 nuclease and the noncapped eGFP sgRNA.

Similar content being viewed by others

References

  1. Cooper, M.S., D'Amico, L.A. & Henry, C.A. Confocal microscopic analysis of morphogenetic movements. Methods Cell Biol. 59, 179–204 (1999).

    Article  CAS  Google Scholar 

  2. Megason, S.G. & Fraser, S.E. Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech. Dev. 120, 1407–1420 (2003).

    Article  CAS  Google Scholar 

  3. Kawakami, K. Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element. Methods Cell Biol. 77, 201–222 (2004).

    Article  CAS  Google Scholar 

  4. Kawakami, K. et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev. Cell 7, 133–144 (2004).

    Article  CAS  Google Scholar 

  5. Ellingsen, S. et al. Large-scale enhancer detection in the zebrafish genome. Development 132, 3799–3811 (2005).

    Article  CAS  Google Scholar 

  6. Kawakami, K. et al. zTrap: zebrafish gene trap and enhancer trap database. BMC Dev. Biol. 10, 105 (2010).

    Article  Google Scholar 

  7. Distel, M., Hocking, J.C., Volkmann, K. & Koster, R.W. The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. J. Cell Biol. 191, 875–890 (2010).

    Article  CAS  Google Scholar 

  8. Wyart, C. & Del Bene, F. Let there be light: zebrafish neurobiology and the optogenetic revolution. Rev. Neurosci. 22, 121–130 (2011).

    Article  CAS  Google Scholar 

  9. Del Bene, F. & Wyart, C. Optogenetics: a new enlightenment age for zebrafish neurobiology. Dev. Neurobiol. 72, 404–414 (2012).

    Article  Google Scholar 

  10. Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).

    Article  CAS  Google Scholar 

  11. Wojtovich, A.P. & Foster, T.H. Optogenetic control of ROS production. Redox Biol. 2, 368–376 (2014).

    Article  CAS  Google Scholar 

  12. Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009).

    Article  CAS  Google Scholar 

  13. Koster, R.W. & Fraser, S.E. Tracing transgene expression in living zebrafish embryos. Dev. Biol. 233, 329–346 (2001).

    Article  CAS  Google Scholar 

  14. Scheer, N. & Campos-Ortega, J.A. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech. Dev. 80, 153–158 (1999).

    Article  CAS  Google Scholar 

  15. Distel, M., Wullimann, M.F. & Köster, R.W. Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proc. Natl. Acad. Sci. USA 106, 13365–13370 (2009).

    Article  CAS  Google Scholar 

  16. Asakawa, K. et al. Genetic dissection of neural circuits by Tol2 transposon–mediated Gal4 gene and enhancer trapping in zebrafish. Proc. Natl. Acad. Sci. USA 105, 1255–1260 (2008).

    Article  CAS  Google Scholar 

  17. Mali, P., Esvelt, K.M. & Church, G.M. Cas9 as a versatile tool for engineering biology. Nat. Methods 10, 957–963 (2013).

    Article  CAS  Google Scholar 

  18. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  Google Scholar 

  19. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    Article  CAS  Google Scholar 

  20. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  Google Scholar 

  21. Hwang, W.Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).

    Article  CAS  Google Scholar 

  22. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  Google Scholar 

  23. Sander, J.D. & Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

    Article  CAS  Google Scholar 

  24. Auer, T.O. & Del Bene, F. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 69, 142–150 (2014).

    Article  CAS  Google Scholar 

  25. Chang, N. et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 23, 465–472 (2013).

    Article  CAS  Google Scholar 

  26. Xiao, A. et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 41, e141 (2013).

    Article  CAS  Google Scholar 

  27. Hruscha, A. et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140, 4982–4987 (2013).

    Article  CAS  Google Scholar 

  28. Auer, T.O., Duroure, K., De Cian, A., Concordet, J.P. & Del Bene, F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 24, 142–153 (2014).

    Article  CAS  Google Scholar 

  29. Zu, Y. et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat. Methods 10, 329–331 (2013).

    Article  CAS  Google Scholar 

  30. Yoshikawa, S., Kawakami, K. & Zhao, X.C. G2R Cre reporter transgenic zebrafish. Dev. Dyn. 237, 2460–2465 (2008).

    Article  CAS  Google Scholar 

  31. Liu, X., Li, Z., Emelyanov, A., Parinov, S. & Gong, Z. Generation of oocyte-specifically expressed Cre transgenic zebrafish for female germline excision of loxP-flanked transgene. Dev. Dyn. 237, 2955–2962 (2008).

    Article  CAS  Google Scholar 

  32. Liu, W.Y., Wang, Y., Qin, Y., Wang, Y.P. & Zhu, Z.Y. Site-directed gene integration in transgenic zebrafish mediated by Cre recombinase using a combination of mutant lox sites. Mar. Biotechnol. (NY) 9, 420–428 (2007).

    Article  CAS  Google Scholar 

  33. Le, X. et al. Heat shock-inducible Cre/lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish. Proc. Natl. Acad. Sci. USA 104, 9410–9415 (2007).

    Article  CAS  Google Scholar 

  34. Thummel, R. et al. Cre-mediated site-specific recombination in zebrafish embryos. Dev. Dyn. 233, 1366–1377 (2005).

    Article  CAS  Google Scholar 

  35. Langenau, D.M. et al. Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 102, 6068–6073 (2005).

    Article  CAS  Google Scholar 

  36. Pan, X., Wan, H., Chia, W., Tong, Y. & Gong, Z. Demonstration of site-directed recombination in transgenic zebrafish using the Cre/loxP system. Transgenic Res. 14, 217–223 (2005).

    Article  CAS  Google Scholar 

  37. Dong, J. & Stuart, G.W. Transgene manipulation in zebrafish by using recombinases. Methods Cell Biol. 77, 363–379 (2004).

    Article  CAS  Google Scholar 

  38. Emelyanov, A. & Parinov, S. Mifepristone-inducible LexPR system to drive and control gene expression in transgenic zebrafish. Dev. Biol. 320, 113–121 (2008).

    Article  CAS  Google Scholar 

  39. Esengil, H., Chang, V., Mich, J.K. & Chen, J.K. Small-molecule regulation of zebrafish gene expression. Nat. Chem. Biol. 3, 154–155 (2007).

    Article  CAS  Google Scholar 

  40. Zhu, P. et al. Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the tet system. Front. Neural Circ. 3, 21 (2009).

    Google Scholar 

  41. Huang, C.J. et al. Conditional expression of a myocardium-specific transgene in zebrafish transgenic lines. Dev. Dyn. 233, 1294–1303 (2005).

    Article  CAS  Google Scholar 

  42. Subedi, A. et al. Adoption of the Q transcriptional regulatory system for zebrafish transgenesis. Methods 66, 433–440 (2013).

    Article  Google Scholar 

  43. Suli, A., Guler, A.D., Raible, D.W. & Kimelman, D. A targeted gene expression system using the tryptophan repressor in zebrafish shows no silencing in subsequent generations. Development 141, 1167–1174 (2014).

    Article  CAS  Google Scholar 

  44. Abe, G., Suster, M.L. & Kawakami, K. Tol2-mediated transgenesis, gene trapping, enhancer trapping, and the Gal4-UAS system. Methods Cell Biol. 104, 23–49 (2011).

    Article  CAS  Google Scholar 

  45. Gagnon, J.A. et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS ONE 9, e98186 (2014).

    Article  Google Scholar 

  46. Hwang, W.Y. et al. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS ONE 8, e68708 (2013).

    Article  CAS  Google Scholar 

  47. Montague, T.G., Cruz, J.M., Gagnon, J.A., Church, G.M. & Valen, E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 42, W401–W407 (2014).

    Article  CAS  Google Scholar 

  48. Szymczak, A.L. et al. Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    Article  CAS  Google Scholar 

  49. Liu, D. et al. Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized Cas9 and evaluation of off-targeting effect. J. Genet. Genomics 41, 43–46 (2014).

    Article  Google Scholar 

  50. Jao, L.E., Wente, S.R. & Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. USA 110, 13904–13909 (2013).

    Article  CAS  Google Scholar 

  51. Balciuniene, J. & Balciunas, D. Gene trapping using Gal4 in zebrafish. J. Vis. Exp. e50113 (2013).

  52. Westerfield, M. The Zebrafish Book 4th edn. (University of Oregon Press, 2000).

  53. Rembold, M., Lahiri, K., Foulkes, N.S. & Wittbrodt, J. Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat. Protoc. 1, 1133–1139 (2006).

    Article  CAS  Google Scholar 

  54. Sambrook, J. & Russell, D.W. Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc. 2006 10.1101/pdb.prot4455 (2006).

  55. Suster, M.L., Abe, G., Schouw, A. & Kawakami, K. Transposon-mediated BAC transgenesis in zebrafish. Nat. Protoc. 6, 1998–2021 (2011).

    Article  CAS  Google Scholar 

  56. Foley, J.E. et al. Targeted mutagenesis in zebrafish using customized zinc-finger nucleases. Nat. Protoc. 4, 1855–1867 (2009).

    Article  CAS  Google Scholar 

  57. Meyer, M.P. & Smith, S.J. Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J. Neurosci. 26, 3604–3614 (2006).

    Article  CAS  Google Scholar 

  58. Shin, J., Park, H.C., Topczewska, J.M., Mawdsley, D.J. & Appel, B. Neural cell fate analysis in zebrafish using olig2 BAC transgenics. Methods Cell Sci. 25, 7–14 (2003).

    Article  CAS  Google Scholar 

  59. Ng, A.N. et al. Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev. Biol. 286, 114–135 (2005).

    Article  CAS  Google Scholar 

  60. Komisarczuk, A.Z. et al. Enhancer detection and developmental expression of zebrafish sprouty1, a member of the fgf8 synexpression group. Dev. Dyn. 237, 2594–2603 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to C. Wyart and M. Kapsimali for the Tg(olig2:eGFP), Tg(nkx2.2a:meGFP) and Tg(CLGY786) lines. We thank J. Wittbrodt for scientific discussion and support, and C. Giovannangeli and members of the Del Bene laboratory for general discussion and comments. We thank the members of the Developmental Biology Curie imaging facility (PICT-IBiSA@BDD, UMR 3215/U934) for their help and advice with confocal microscopy. Del Bene laboratory 'Neural Circuits Development' is part of the Laboratoire d'Excellence (LABEX) entitled DEEP (ANR -11-LABX-0044). T.O.A. was supported by a Boehringer Ingelheim Fonds Ph.D. fellowship. This work has been supported by an ATIP/AVENIR program starting grant (F.D.B.), by ERC-StG no. 311159 (F.D.B.), by ANR TEFOR (J.-P.C.), and by CNRS, INSERM, Institut Curie and the Muséum National d'Histoire Naturelle.

Author information

Authors and Affiliations

Authors

Contributions

T.O.A., J.-P.C. and F.D.B. contributed to the protocol development; T.O.A. and K.D. built donor constructs, and carried out the PCR diagnosis and Southern blotting; T.O.A. performed microinjections and confocal imaging; T.O.A. and F.D.B. wrote the manuscript with inputs from J.-P.C. and K.D.

Corresponding authors

Correspondence to Thomas O Auer or Filippo Del Bene.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Plasmid map of the donor plasmid.

The corresponding Genbank sequence can be found in Supplementary Note 1.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auer, T., Duroure, K., Concordet, JP. et al. CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish. Nat Protoc 9, 2823–2840 (2014). https://doi.org/10.1038/nprot.2014.187

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.187

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing