Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Tethered particle analysis of supercoiled circular DNA using peptide nucleic acid handles

An Erratum to this article was published on 20 November 2014

This article has been updated

Abstract

This protocol describes how to monitor individual naturally supercoiled circular DNA plasmids bound via peptide nucleic acid (PNA) handles between a bead and a surface. The protocol was developed for single-molecule investigation of the dynamics of supercoiled DNA, and it allows the investigation of both the dynamics of the molecule itself and of its interactions with a regulatory protein. Two bis-PNA clamps designed to bind with extremely high affinity to predetermined homopurine sequence sites in supercoiled DNA are prepared: one conjugated with digoxigenin for attachment to an anti-digoxigenin-coated glass cover slide, and one conjugated with biotin for attachment to a submicron-sized streptavidin-coated polystyrene bead. Plasmids are constructed, purified and incubated with the PNA handles. The dynamics of the construct is analyzed by tracking the tethered bead using video microscopy: less supercoiling results in more movement, and more supercoiling results in less movement. In contrast to other single-molecule methodologies, the current methodology allows for studying DNA in its naturally supercoiled state with constant linking number and constant writhe. The protocol has potential for use in studying the influence of supercoils on the dynamics of DNA and its associated proteins, e.g., topoisomerase. The procedure takes 4 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart of the entire procedure providing an overview of the main steps involved in developing the assay and performing tethered particle motion experiments.
Figure 2: Sketch of the naturally supercoiled DNA to which two PNA handles (yellow) are specifically attached.
Figure 3: Constructed plasmids.
Figure 4: Electrophoretic analysis of materials.
Figure 5: Preparation of perfusion chamber.
Figure 6: Image analysis.
Figure 7: Example of PCA.
Figure 8: r.m.s.d. of various plasmid constructs usable for troubleshooting the overall length of the tether.
Figure 9: Typical data resulting from TPM experiments with a supercoiled DNA plasmid.

Similar content being viewed by others

Change history

  • 12 September 2014

     In the version of this article initially published, the source from which Figures 2, 4, 8 and 9 was adapted was not cited and credited correctly. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Bustamante, C., Bryant, Z. & Smith, S.B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

    Article  Google Scholar 

  2. Lee, W.M., Reece, P.J., Marchington, R.F., Metzger, N.K. & Dholakia, K. Construction and calibration of an optical trap on a fluorescence optical microscope. Nat. Protoc. 2, 3226–3238 (2007).

    Article  CAS  Google Scholar 

  3. Strick, T., Allemand, J.F., Croquette, V. & Bensimon, D. Twisting and stretching single DNA molecules. Prog. Biophys. Mol. Biol. 74, 115–140 (2000).

    Article  CAS  Google Scholar 

  4. Wang, M.D., Yin, H., Landick, R., Gelles, J. & Block, S.M. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997).

    Article  CAS  Google Scholar 

  5. Gross, P. et al. Quantifying how DNA stretches, melts and changes twist under tension. Nat. Phys. 7, 731–736 (2011).

    Article  CAS  Google Scholar 

  6. Stratmann, S.A. & van Oijen, A.M. DNA replication at the single-molecule level. Chem. Soc. Rev. 43, 1201–1220 (2014).

    Article  CAS  Google Scholar 

  7. Dulin, D., Lipfert, J., Moolman, M.C. & Dekker, N.H. Studying genomic processes at the single-molecule level: introducing the tools and applications. Nat. Rev. Genet. 14, 9–22 (2013).

    Article  CAS  Google Scholar 

  8. Herbert, K.M., Greenleaf, W.J. & Block, S.M. Single-molecule studies of RNA polymerase: motoring along. Annu. Rev. Biochem. 77, 149–176 (2008).

    Article  CAS  Google Scholar 

  9. Chaurasiya, K.R., Geertsema, H., Cristofari, G., Darlix, J.L. & Williams, M.C. A single zinc finger optimizes the DNA interactions of the nucleocapsid protein of the yeast retrotransposon Ty3. Nucleic Acids Res. 40, 751–760 (2012).

    Article  CAS  Google Scholar 

  10. Paramanathan, T., Vladescu, I., McCauley, M.J., Rouzina, I. & Williams, M.C. Force spectroscopy reveals the DNA structural dynamics that govern the slow binding of actinomycin D. Nucleic Acids Res. 40, 4925–4932 (2012).

    Article  CAS  Google Scholar 

  11. Forget, A.L., Dombrowski, C.C., Amitani, I. & Kowalczykowski, S.C. Exploring protein-DNA interactions in 3D using in situ construction, manipulation and visualization of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy. Nat. Protoc. 8, 525–538 (2013).

    Article  CAS  Google Scholar 

  12. Zurla, C. et al. Direct demonstration and quantification of long-range DNA looping by the λ bacteriophage repressor. Nucleic Acids Res. 37, 2789–2795 (2009).

    Article  CAS  Google Scholar 

  13. Manzo, C., Zurla, C., Dunlap, D.D. & Finzi, L. The effect of nonspecific binding of λ repressor on DNA looping dynamics. Biophys. J. 103, 1753–1761 (2012).

    Article  CAS  Google Scholar 

  14. Priest, D.G. et al. Quantitation of the DNA tethering effect in long-range DNA looping in vivo and in vitro using the Lac and λ repressors. Proc. Natl. Acad. Sci. USA 111, 349–354 (2014).

    Article  CAS  Google Scholar 

  15. Normanno, D., Vanzi, F. & Pavone, F.S. Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated DNA looping. Nucleic Acids Res. 36, 2505–2513 (2008).

    Article  CAS  Google Scholar 

  16. Norregaard, K. et al. DNA supercoiling enhances cooperativity and efficiency of an epigenetic switch. Proc. Natl. Acad. Sci. USA 110, 17386–17391 (2013).

    Article  CAS  Google Scholar 

  17. Jian, H.M., Schlick, T. & Vologodskii, A. Internal motion of supercoiled DNA: Brownian dynamics simulations of site juxtaposition. J. Mol. Biol. 284, 287–296 (1998).

    Article  CAS  Google Scholar 

  18. Bauer, M. & Metzler, R. In vivo facilitated diffusion model. PLoS ONE 8, e53956 (2013).

    Article  CAS  Google Scholar 

  19. Bentin, T. & Nielsen, P.E. In vitro transcription of a torsionally constrained template. Nucleic Acids Res. 30, 803–809 (2002).

    Article  CAS  Google Scholar 

  20. Bentin, T. & Nielsen, P.E. Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA 'breathing' dynamics. Biochemistry 35, 8863–8869 (1996).

    Article  CAS  Google Scholar 

  21. Norregaard, K. et al. Effect of supercoiling on the λ switch. Bacteriophage 4, e27517 (2014).

    Article  Google Scholar 

  22. Lia, G. et al. The antiparallel loops in gal DNA. Nucleic Acids Res. 36, 4204–4210 (2008).

    Article  CAS  Google Scholar 

  23. Lia, G. et al. Supercoiling and denaturation in Gal repressor/heat unstable nucleoid protein (HU)-mediated DNA looping. Proc. Natl. Acad. Sci. USA 100, 11373–11377 (2003).

    Article  CAS  Google Scholar 

  24. Strick, T.R., Croquette, V. & Bensimon, D. Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901–904 (2000).

    Article  CAS  Google Scholar 

  25. Lindner, M., Nir, G., Vivante, A., Young, I.T. & Garini, Y. Dynamic analysis of a diffusing particle in a trapping potential. Phy. Rev. E Stat. Nonlin. Soft Matter Phys. 87, 022716 (2013).

    Article  Google Scholar 

  26. Mearini, G., Nielsen, P.E. & Fackelmayer, F.O. Localization and dynamics of small circular DNA in live mammalian nuclei. Nucleic Acids Res. 32, 2642–2651 (2004).

    Article  CAS  Google Scholar 

  27. Norregaard, K., Jauffred, L., Berg-Sørensen, K. & Oddershede, L.B. Optical manipulation of single molecules in the living cell. Phys. Chem. Chem. Phys. 16, 12614–12624 (2014).

    Article  CAS  Google Scholar 

  28. Nelson, P.C. et al. Tethered particle motion as a diagnostic of DNA tether length. J. Phys. Chem. B 110, 17260–17267 (2006).

    Article  CAS  Google Scholar 

  29. Baek, K., Svenningsen, S., Eisen, H., Sneppen, K. & Brown, S. Single-cell analysis of λ immunity regulation. J. Mol. Biol. 334, 363–372 (2003).

    Article  CAS  Google Scholar 

  30. Egholm, M. et al. Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res. 23, 217–222 (1995).

    Article  CAS  Google Scholar 

  31. Nielsen, P.E. Sequence-selective targeting of duplex DNA by peptide nucleic acids. Curr. Opin. Mol. Ther. 12, 184–191 (2010).

    CAS  PubMed  Google Scholar 

  32. Griffith, M.C. et al. Single and bis peptide nucleic acids as triplexing agents: binding and stoichiometry. J. Am. Chem. Soc. 117, 831–832 (1995).

    Article  CAS  Google Scholar 

  33. Yin, H., Landick, R. & Gelles, J. Tethered particle motion method for studying transcript elongation by a single RNA-polymerase molecule. Biophys. J. 67, 2468–2478 (1994).

    Article  CAS  Google Scholar 

  34. Pardee, A.B., Jacob, F. & Monod, J. Genetic control and cytoplasmic expression of inducibility in the synthesis of β-galactosidase by E. coli. J. Mol. Biol. 1, 165–178 (1959).

    Article  CAS  Google Scholar 

  35. Miller, J.H. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory, 1972).

  36. Norgard, M.V., Emigholz, K. & Monahan, J.J. Increased amplification of Pbr322 plasmid deoxyribonucleic-acid in Escherichia coli K-12 strain-Rr1 and Strain-Chi-1776 grown in the presence of high-concentrations of nucleoside. J. Bacteriol. 138, 270–272 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cheezum, M.K., Walker, W.F. & Guilford, W.H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81, 2378–2388 (2001).

    Article  CAS  Google Scholar 

  38. Birnboim, H.C. & Doly, J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513–1523 (1979).

    Article  CAS  Google Scholar 

  39. Radloff, R., Bauer, W. & Vinograd, J. A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proc. Natl. Acad. Sci. USA 57, 1514–1521 (1967).

    Article  CAS  Google Scholar 

  40. Esposito, F. & Sinden, R.R. Supercoiling in prokaryotic and eukaryotic DNA: changes in response to topological perturbation of plasmids in E. coli and SV40 in vitro, in nuclei and in CV-1 cells. Nucleic Acids Res. 15, 5105–5124 (1987).

    Article  CAS  Google Scholar 

  41. Hansen, G.I., Bentin, T., Larsen, H.J. & Nielsen, P.E. Structural isomers of bis-PNA bound to a target in duplex DNA. J. Mol. Biol. 307, 67–74 (2001).

    Article  CAS  Google Scholar 

  42. Andersson, M., Czerwinski, F. & Oddershede, L.B. Optimizing active and passive calibration of optical tweezers. J. Opt. 13, 044020 (2011).

    Article  Google Scholar 

  43. Czaerwinski, F., Richardson, A.C. & Oddershede, L.B. Quantifying noise in optical tweezers by Allan variance. Opt. Express 17, 13255–13269 (2009).

    Article  Google Scholar 

  44. Tolic-Norrelykke, S.F., Rasmussen, M.B., Pavone, F.S., Berg-Sorensen, K. & Oddershede, L.B. Stepwise bending of DNA by a single TATA-box binding protein. Biophys. J. 90, 3694–3703 (2006).

    Article  Google Scholar 

  45. Blumberg, S., Gajraj, A., Pennington, M.W. & Meiners, J.C. Three-dimensional characterization of tethered microspheres by total internal reflection fluorescence microscopy. Biophys. J. 89, 1272–1281 (2005).

    Article  CAS  Google Scholar 

  46. Han, L. et al. Concentration and length dependence of DNA looping in transcriptional regulation. PLoS ONE 4, e5621 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The CI protein was a generous gift from D. Lewis and S. Adhya, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, US National Institutes of Health. We acknowledge financial support from a University of Copenhagen center of excellence and from the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Contributions

P.E.N., S.B. and L.B.O. designed the study; K.N., M.A. and S.B. performed the experiments; P.E.N. and S.B. contributed new reagents; K.N., M.A., S.B. and L.B.O. analyzed data; all authors wrote the paper.

Corresponding author

Correspondence to Lene B Oddershede.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Purification and identity of PNA product.

(a) HPLC analysis of purified digoxigenin labelled bis-PNA. (b) MALDI-TOF spectrum of digoxigenin labelled bis-PNA (calculated mass is 7187 and the found mass is within the accuracy of the instrument).

Supplementary information

Supplementary Figure 1

Purification and identity of PNA product. (PDF 499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norregaard, K., Andersson, M., Nielsen, P. et al. Tethered particle analysis of supercoiled circular DNA using peptide nucleic acid handles. Nat Protoc 9, 2206–2223 (2014). https://doi.org/10.1038/nprot.2014.152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.152

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing