Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry

Abstract

Post-transcriptional modification of RNA is an important determinant of RNA quality control, translational efficiency, RNA-protein interactions and stress response. This is illustrated by the observation of toxicant-specific changes in the spectrum of tRNA modifications in a stress-response mechanism involving selective translation of codon-biased mRNA for crucial proteins. To facilitate systems-level studies of RNA modifications, we developed a liquid chromatography–mass spectrometry (LC-MS) technique for the quantitative analysis of modified ribonucleosides in tRNA. The protocol includes tRNA purification by HPLC, enzymatic hydrolysis, reversed-phase HPLC resolution of the ribonucleosides, and identification and quantification of individual ribonucleosides by LC-MS via dynamic multiple reaction monitoring (DMRM). In this approach, the relative proportions of modified ribonucleosides are quantified in several micrograms of tRNA in a 15-min LC-MS run. This protocol can be modified to analyze other types of RNA by modifying the steps for RNA purification as appropriate. By comparison, traditional methods for detecting modified ribonucleosides are labor- and time-intensive, they require larger RNA quantities, they are modification-specific or require radioactive labeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures of modified ribonucleosides described in this protocol.
Figure 2: Workflow for the quantitative analysis of modified ribonucleosides in tRNA.
Figure 3: Analysis of LC-MS data from modified ribonucleoside studies.
Figure 4: RNA quality control analysis on an Agilent Bioanalyzer.
Figure 5: TIC from LC-MS/MS analysis of yeast tRNA ribonucleosides, to demonstrate the resolution of modified ribonucleosides by reversed-phase HPLC.

Similar content being viewed by others

References

  1. Crain, P.F., Rozenski, J. & McCloskey, J.A. The RNA Modification Database (http://mods.rna.albany.edu) (1999).

  2. Czerwoniec, A. et al. MODOMICS: a database of RNA modification pathways. 2008 update. Nucleic Acids Res. 37, D118–D121 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Bjork, G.R. et al. Transfer RNA modification: influence on translational frameshifting and metabolism. FEBS Lett. 452, 47–51 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Urbonavicius, J. et al. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J. 20, 4863–4873 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yarian, C. et al. Accurate translation of the genetic code depends on tRNA modified nucleosides. J. Biol. Chem. 277, 16391–16395 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Agris, P.F., Vendeix, F.A. & Graham, W.D. tRNA's wobble decoding of the genome: 40 years of modification. J. Mol. Biol. 366, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Motorin, Y. & Helm, M. tRNA stabilization by modified nucleotides. Biochemistry 49, 4934–4944 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Alexandrov, A. et al. Rapid tRNA decay can result from lack of non-essential modifications. Mol. Cell 21, 87–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Thompson, D.M. & Parker, R. Stressing out over tRNA cleavage. Cell 138, 215–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Begley, U. et al. Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Mol. Cell 28, 860–870 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Netzer, N. et al. Innate immune and chemically triggered oxidative stress modifies translational fidelity. Nature 462, 522–526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Emilsson, V., Naslund, A.K. & Kurland, C.G. Thiolation of transfer RNA in Escherichia coli varies with growth rate. Nucleic Acids Res. 20, 4499–4505 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bauer, F. et al. Translational control of cell division by Elongator. Cell Rep. 1, 424–433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chan, C.T. et al. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 3, 937 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chan, C.T. et al. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 6, e1001247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grosjean, H., Droogmans, L., Roovers, M. & Keith, G. Detection of enzymatic activity of transfer RNA modification enzymes using radiolabeled tRNA substrates. Methods Enzymol. 425, 55–101 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. Köhrer, C. & Rajbhandary, U.L. The many applications of acid urea polyacrylamide gel electrophoresis to studies of tRNAs and aminoacyl-tRNA synthetases. Methods 44, 129–138 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Suzuki, T., Ikeuchi, Y., Noma, A. & Sakaguchi, Y. Mass spectrometric identification and characterization of RNA-modifying enzymes. Methods Enzymol. 425, 211–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Meng, Z. & Limbach, P.A. Mass spectrometry of RNA: linking the genome to the proteome. Brief. Funct. Genomic Proteomic 5, 87–95 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pomerantz, S.C. & McCloskey, J.A. Analysis of RNA hydrolyzates by liquid chromatography-mass spectrometry. Methods Enzymol. 193, 796–824 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Limbach, P.A., Crain, P.F. & McCloskey, J.A. Summary: the modified nucleosides of RNA. Nucleic Acids Res. 22, 2183–2196 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rozenski, J., Crain, P.F. & McCloskey, J.A. The RNA Modification Database: 1999 update. Nucleic Acids Res. 27, 196–197 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mandal, D. et al. Agmatidine, a modified cytidine in the anticodon of archaeal tRNAIle, base pairs with adenosine but not with guanosine. Proc. Natl. Acad. Sci. USA 107, 2872–2877 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Ikeuchi, Y. et al. Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. Nat. Chem. Biol. 6, 277–282 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki, T. & Miyauchi, K. Discovery and characterization of tRNAIle lysidine synthetase (TilS). FEBS Lett. 584, 272–277 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Miyauchi, K., Kimura, S. & Suzuki, T. A cyclic form of N6-threonylcarbamoyladenosine as a widely distributed tRNA hypermodification. Nat. Chem. Biol. 9, 105–111 (2012).

    Article  PubMed  CAS  Google Scholar 

  27. Crain, P.F. Preparation and enzymatic hydrolysis of DNA and RNA for mass spectrometry. Methods Enzymol. 193, 782–790 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Begley, U. et al. A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α. EMBO Mol. Med. 5, 366–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patil, A. et al. Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications. RNA Biol. 9, 990–1001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patil, A. et al. Increased tRNA modification and gene-specific codon usage regulate cell cycle progression during the DNA damage response. Cell Cycle 11, 3656–3665 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dewe, J.M. et al. The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications. RNA 18, 1886–1896 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Phizicky, E.M. & Hopper, A.K. tRNA biology charges to the front. Genes Dev. 24, 1832–1860 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fu, D. et al. Human AlkB homolog ABH8 is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival. Mol. Cell Biol. 30, 2449–2459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Songe-Moller, L. et al. Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Mol. Cell Biol. 30, 1814–1827 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. van den Born, E. et al. ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA. Nat. Commun. 2, 172 (2011).

    Article  PubMed  CAS  Google Scholar 

  37. Decatur, W.A. & Fournier, M.J. rRNA modifications and ribosome function. Trends Biochem. Sci. 27, 344–351 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Fu, Y. & He, C. Nucleic acid modifications with epigenetic significance. Curr. Opin. Chem. Biol. 16, 516–524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yi, C. & Pan, T. Cellular dynamics of RNA modification. Acct. Chem. Res. 44, 1380–1388 (2011).

    Article  CAS  Google Scholar 

  40. Chen, P.Y. et al. Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA 14, 263–274 (2007).

    Article  PubMed  CAS  Google Scholar 

  41. Ebhardt, H.A., Thi, E.P., Wang, M.B. & Unrau, P.J. Extensive 3′ modification of plant small RNAs is modulated by helper component-proteinase expression. Proc. Natl. Acad. Sci. USA 102, 13398–13403 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Katoh, T. et al. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev. 23, 433–438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wyatt, J.R., Chastain, M. & Puglisi, J.D. Synthesis and purification of large amounts of RNA oligonucleotides. Biotechniques 11, 764–769 (1991).

    CAS  PubMed  Google Scholar 

  44. Lukavsky, P.J. & Puglisi, J.D. Large-scale preparation and purification of polyacrylamide-free RNA oligonucleotides. RNA 10, 889–893 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Seong, B.L. & RajBhandary, U.L. Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. Proc. Natl. Acad. Sci. USA 84, 334–338 (1987).

    Article  CAS  PubMed  Google Scholar 

  46. Easton, L.E., Shibata, Y. & Lukavsky, P.J. Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography. RNA 16, 647–653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Waghmare, S.P., Pousinis, P., Hornby, D.P. & Dickman, M.J. Studying the mechanism of RNA separations using RNA chromatography and its application in the analysis of ribosomal RNA and RNA:RNA interactions. J. Chromatogr. A 1216, 1377–1382 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Likic, S., Rusak, G. & Krajacic, M. Separation of plant viral satellite double-stranded RNA using high-performance liquid chromatography. J. Chromatogr. A 1189, 451–455 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, I., McKenna, S.A., Viani Puglisi, E. & Puglisi, J.D. Rapid purification of RNAs using fast performance liquid chromatography (FPLC). RNA 13, 289–294 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Parvez, H., Kato, Y. & Parvez, S. Gel Permeation and Ion-Exchange Chromatography of Proteins and Peptides (VNU Science Press, 1985).

  51. Kato, Y. et al. Operational variables in high-performance gel filtration of DNA fragments and RNAs. J. Chromatogr. 266, 341–349 (1983).

    Article  CAS  PubMed  Google Scholar 

  52. Chionh, Y.H. et al. A multidimensional platform for the purification of non-coding RNA species. Nucleic Acids Res. 41, e168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim, Y.K. et al. Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol. Cell 46, 893–895 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Eldh, M., Lotvall, J., Malmhall, C. & Ekstrom, K. Importance of RNA isolation methods for analysis of exosomal RNA: evaluation of different methods. Mol. Immunol. 50, 278–286 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Li, Y. & Kowdley, K.V. Method for microRNA isolation from clinical serum samples. Anal. Biochem. 431, 69–75 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Taghizadeh, K. et al. Quantification of DNA damage products resulting from deamination, oxidation and reaction with products of lipid peroxidation by liquid chromatography isotope dilution tandem mass spectrometry. Nat. Protoc. 3, 1287–1298 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dong, M., Wang, C., Deen, W.M. & Dedon, P.C. Absence of 2′-deoxyoxanosine and presence of abasic sites in DNA exposed to nitric oxide at controlled physiological concentrations. Chem. Res. Toxicol. 16, 1044–1055 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Havelund, J.F. et al. Identification of 5-hydroxycytidine at position 2501 concludes characterization of modified nucleotides in E. coli 23S rRNA. J. Mol. Biol. 411, 529–536 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Taghizadeh and J. Wishnok for assistance with chromatography and mass spectrometry, which were performed in the Bioanalytical Facilities Core of the MIT Center for Environmental Health Sciences. Financial support was provided by the National Institute of Environmental Health Sciences (ES002109, ES015037 and ES017010), the MIT Westaway Fund, the Merck-MIT Graduate Student Fellowship (C.T.Y.C.), the David H. Koch Graduate Cancer Research Fellowship (C.G.), the Howard Hughes Medical Institute International Student Research Fellowship (C.G.) and the Singapore-MIT Alliance for Research and Technology.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the experimental design, data analysis and interpretation, and preparation of the manuscript. D.S., C.T.Y.C., C.G., K.S.L., Y.H.C., B.S.R., M.E.M. and I.R.B. contributed to the development of the protocol and performed experiments that contributed to this manuscript.

Corresponding author

Correspondence to Peter C Dedon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, D., Chan, C., Gu, C. et al. Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nat Protoc 9, 828–841 (2014). https://doi.org/10.1038/nprot.2014.047

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.047

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing