Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Large-area molecular patterning with polymer pen lithography

Abstract

The challenge of constructing surfaces with nanostructured chemical functionality is central to many areas of biology and biotechnology. This protocol describes the steps required for performing molecular printing using polymer pen lithography (PPL), a cantilever-free scanning probe-based technique that can generate sub-100-nm molecular features in a massively parallel fashion. To illustrate how such molecular printing can be used for a variety of biologically relevant applications, we detail the fabrication of the lithographic apparatus and the deposition of two materials, an alkanethiol and a polymer onto a gold and silicon surface, respectively, and show how the present approach can be used to generate nanostructures composed of proteins and metals. Finally, we describe how PPL enables researchers to easily create combinatorial arrays of nanostructures, a powerful approach for high-throughput screening. A typical protocol for fabricating PPL arrays and printing with the arrays takes 48–72 h to complete, including two overnight waiting steps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polymer pen lithography (PPL) protocol.
Figure 2: Selected steps of the master fabrication process.
Figure 3: Selected steps of the tip array fabrication process.
Figure 5: Selecting the correct patterning height for performing PPL.
Figure 4: Procedure for correcting misalignment between the tip array and substrate by tilting the stage until the PPL array and substrate are co-planar.
Figure 6: Patterns of soft and hard materials written by PPL.

Similar content being viewed by others

References

  1. Tran, H., Killops, K.L. & Campos, L.M. Advancements and challenges of patterning biomolecules with sub-50 nm features. Soft Matter 9, 6578–6586 (2013).

    Article  CAS  Google Scholar 

  2. Schmidt, R.C. & Healy, K.E. Controlling biological interfaces on the nanometer-length scale. J. Biomed. Mater. Res. A 90A, 1252–1261 (2009).

    Article  CAS  Google Scholar 

  3. Kim, D.-H., Lee, H., Lee, Y.K., Nam, J.-M. & Levchenko, A. Biomimetic nanopatterns as enabling tools for analysis and control of live cells. Adv. Mater. 22, 4551–4566 (2010).

    Article  CAS  Google Scholar 

  4. Kumar, A., Biebuyck, H.A. & Whitesides, G.M. Patterning self-assembled monolayers: applications in materials science. Langmuir 10, 1498–1511 (1994).

    Article  CAS  Google Scholar 

  5. Kumar, A. & Whitesides, G.M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol 'ink' followed by chemical etching. Appl. Phys. Lett. 63, 2002–2004 (1993).

    Article  CAS  Google Scholar 

  6. Wilbur, J.L., Kumar, A., Kim, E. & Whitesides, G.M. Microfabrication by microcontact printing of self-assembled monolayers. Adv. Mater. 6, 600–604 (1994).

    Article  CAS  Google Scholar 

  7. Xia, Y. & Whitesides, G.M. Soft lithography. Angew. Chem. Int. Ed. 37, 550–575 (1998).

    Article  CAS  Google Scholar 

  8. Qin, D., Xia, Y. & Whitesides, G.M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010).

    Article  CAS  Google Scholar 

  9. Huo, F.W. et al. Polymer pen lithography. Science 321, 1658–1660 (2008).

    Article  CAS  Google Scholar 

  10. Barbulovic-Nad, I. et al. Bio-microarray fabrication techniques—a review. Crit. Rev. Biotechnol. 26, 237–259 (2006).

    Article  CAS  Google Scholar 

  11. Allain, L.R., Stratis-Cullum, D.N. & Vo-Dinh, T. Investigation of microfabrication of biological sample arrays using piezoelectric and bubble-jet printing technologies. Anal. Chim. Acta 518, 77–85 (2004).

    Article  CAS  Google Scholar 

  12. Park, J.-U. et al. High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782–789 (2007).

    Article  CAS  Google Scholar 

  13. Salaita, K. et al. Massively parallel dip-pen nanolithography with 55,000-pen two-dimensional arrays. Angew. Chem. Int. Ed. 45, 7220–7223 (2006).

    Article  CAS  Google Scholar 

  14. Salaita, K., Wang, Y.H. & Mirkin, C.A. Applications of dip-pen nanolithography. Nat. Nanotechnol. 2, 145–155 (2007).

    Article  CAS  Google Scholar 

  15. Giam, L.R. & Mirkin, C.A. Cantilever-free scanning probe molecular printing. Angew. Chem.Int. Ed. 50, 7482–7485 (2011).

    Article  CAS  Google Scholar 

  16. Braunschweig, A.B., Huo, F. & Mirkin, C.A. Molecular printing. Nat. Chem. 1, 353–358 (2009).

    Article  CAS  Google Scholar 

  17. Wilbur, J.L., Kim, E., Xia, Y. & Whitesides, G.M. Lithographic molding: A convenient route to structures with sub-micrometer dimensions. Adv. Mater. 7, 649–652 (1995).

    Article  CAS  Google Scholar 

  18. Jung Moo, H., Fatih, M.O. & Jun, Z. A micromachined elastomeric tip array for contact printing with variable dot size and density. J. Micromech. Microeng. 18, 015003 (2008).

    Article  Google Scholar 

  19. Xie, Z. et al. Polymer pen lithography using dual-elastomer tip arrays. Small 8, 2664–2669 (2012).

    Article  CAS  Google Scholar 

  20. Shim, W. et al. Hard-tip, soft-spring lithography. Nature 469, 516–521 (2011).

    Article  CAS  Google Scholar 

  21. Shim, W. et al. Multifunctional cantilever-free scanning probe arrays coated with multilayer graphene. Proc. Natl. Acad. Sci. USA 109, 18312–18317 (2012).

    Article  CAS  Google Scholar 

  22. Eichelsdoerfer, D.J., Brown, K.A., Boya, R., Shim, W. & Mirkin, C.A. Tuning the spring constant of cantilever-free tip arrays. Nano Lett. 13, 664–667 (2013).

    Article  CAS  Google Scholar 

  23. Huo, F.W. et al. Beam pen lithography. Nat. Nanotechnol. 5, 637–640 (2010).

    Article  CAS  Google Scholar 

  24. Brown, K.A. et al. A cantilever-free approach to dot-matrix nanoprinting. Proc. Natl. Acad. Sci. USA 110, 12921–12924 (2013).

    Article  CAS  Google Scholar 

  25. Liao, X., Braunschweig, A.B. & Mirkin, C.A. 'Force-Feedback' leveling of massively parallel arrays in polymer pen lithography. Nano Lett. 10, 1335–1340 (2010).

    Article  CAS  Google Scholar 

  26. Ginger, D.S., Zhang, H. & Mirkin, C.A. The evolution of dip-pen nanolithography. Angew. Chem. Int. Ed. 43, 30–45 (2004).

    Article  Google Scholar 

  27. Giam, L.R. et al. Scanning probe-enabled nanocombinatorics define the relationship between fibronectin feature size and stem cell fate. Proc. Natl. Acad. Sci. USA 109, 4377–4382 (2012).

    Article  CAS  Google Scholar 

  28. Zhong, X. et al. Materials for the preparation of polymer pen lithography tip arrays and a comparison of their printing properties. J. Pol. Sci. A 51, 1533–1539 (2013).

    Article  CAS  Google Scholar 

  29. Huang, L. et al. Matrix-assisted dip-pen nanolithography and polymer pen lithography. Small 6, 1077–1081 (2010).

    Article  CAS  Google Scholar 

  30. Bian, S., He, J., Schesing, K.B. & Braunschweig, A.B. Polymer pen lithography (PPL)-induced site-specific click chemistry for the formation of functional glycan arrays. Small 8, 2000–2005 (2012).

    Article  CAS  Google Scholar 

  31. Bian, S., Schesing, K.B. & Braunschweig, A.B. Matrix-assisted polymer pen lithography–induced Staudinger ligation. Chem. Commun. 48, 4995–4997 (2012).

    Article  CAS  Google Scholar 

  32. Chai, J.A. et al. Scanning probe block co-polymer lithography. Proc. Natl. Acad. Sci. USA 107, 20202–20206 (2010).

    Article  CAS  Google Scholar 

  33. Giam, L.R. et al. Positionally defined, binary semiconductor nanoparticles synthesized by scanning probe block copolymer lithography. Nano Lett. 12, 1022–1025 (2012).

    Article  CAS  Google Scholar 

  34. Brinkmann, F. et al. Interdigitated multicolored bioink micropatterns by multiplexed polymer pen lithography. Small 9, 3266–3275 (2013).

    Article  CAS  Google Scholar 

  35. Zheng, Z. et al. Multiplexed protein arrays enabled by polymer pen lithography: addressing the inking challenge. Angew. Chem. Int. Ed. 48, 7626–7629 (2009).

    Article  CAS  Google Scholar 

  36. Chai, J., Wong, L.S., Giam, L. & Mirkin, C.A. Single-molecule protein arrays enabled by scanning probe block co-polymer lithography. Proc. Natl. Acad. Sci. USA 108, 19521–19525 (2011).

    Article  CAS  Google Scholar 

  37. Bian, S. et al. Covalently patterned graphene surfaces by a force-accelerated Diels-Alder reaction. J. Am. Chem. Soc. 135, 9240–9243 (2013).

    Article  CAS  Google Scholar 

  38. Lee, K.-B., Park, S.-J., Mirkin, C.A., Smith, J.C. & Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).

    Article  CAS  Google Scholar 

  39. Wilson, D.L. et al. Surface organization and nanopatterning of collagen by dip-pen nanolithography. Proc. Natl. Acad. Sci. USA 98, 13660–13664 (2001).

    Article  CAS  Google Scholar 

  40. Lee, K.-B., Lim, J.-H. & Mirkin, C.A. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc. 125, 5588–5589 (2003).

    Article  CAS  Google Scholar 

  41. Sekula, S. et al. Multiplexed lipid dip-pen nanolithography on subcellular scales for the templating of functional proteins and cell culture. Small 4, 1785–1793 (2008).

    Article  CAS  Google Scholar 

  42. Cheung, C.L. et al. Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J. Am. Chem. Soc. 125, 6848–6849 (2003).

    Article  CAS  Google Scholar 

  43. Shikida, M., Sato, K., Tokoro, K. & Uchikawa, D. Comparison of anisotropic etching properties between KOH and TMAH solutions. in Twelfth IEEE International Conference on Micro Electro Mechanical Systems, 1999 (MEMS '99). 315–320 (1999).

  44. Schmid, H. & Michel, B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33, 3042–3049 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based on the work supported by the US Defense Advanced Research Projects Agency (DARPA) Microsystems Technology Office (MTO) award N66001-08-1-2044; Asian Office of Aerospace Research and Development (AOARD) award FA2386-10-1-4065; Air Force Office of Scientific Research (AFOSR) awards FA9550-12-1-0280 and FA9550-12-1-0141; US National Science Foundation awards DBI-1152139, DBI-1152169 and DMB-1124131; Department of Defense (DoD)/Naval Postgraduate School (NPS)/National Security Science and Engineering Faculty (NSSEF) fellowship awards N00244-09-1-0012 and N00244-09-1-0071; Chicago Biomedical Consortium with support from Searle Funds at The Chicago Community Trust; and Center of Cancer Nanotechnology Excellence (CCNE) initiative of the US National Institutes of Health (NIH) award U54 CA151880. D.J.E. is supported by a DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate Fellowship (NDSEG) 32 CFR 168a. X.L. gratefully acknowledges support from the Ryan Fellowship from Northwestern University. K.A.B. gratefully acknowledges support from Northwestern University's International Institute for Nanotechnology. B.R. acknowledges the Indo-US Science and Technology Forum (IUSSTF) for a postdoctoral fellowship. L.R.G. acknowledges the NSF for a Postdoctoral Research Fellowship in Biology.

Author information

Authors and Affiliations

Authors

Contributions

D.J.E., X.L., K.A.B., L.R.G., A.B.B. and C.A.M. are responsible for the preparation of the paper. D.J.E., X.L., M.D.C., W.M., B.R. and K.A.B. are responsible for the experiments described in this paper.

Corresponding author

Correspondence to Chad A Mirkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichelsdoerfer, D., Liao, X., Cabezas, M. et al. Large-area molecular patterning with polymer pen lithography. Nat Protoc 8, 2548–2560 (2013). https://doi.org/10.1038/nprot.2013.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.159

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing