Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The touchscreen operant platform for testing learning and memory in rats and mice

Abstract

An increasingly popular method of assessing cognitive functions in rodents is the automated touchscreen platform, on which a number of different cognitive tests can be run in a manner very similar to touchscreen methods currently used to test human subjects. This methodology is low stress (using appetitive rather than aversive reinforcement), has high translational potential and lends itself to a high degree of standardization and throughput. Applications include the study of cognition in rodent models of psychiatric and neurodegenerative diseases (e.g., Alzheimer's disease, schizophrenia, Huntington's disease, frontotemporal dementia), as well as the characterization of the role of select brain regions, neurotransmitter systems and genes in rodents. This protocol describes how to perform four touchscreen assays of learning and memory: visual discrimination, object-location paired-associates learning, visuomotor conditional learning and autoshaping. It is accompanied by two further protocols (also published in this issue) that use the touchscreen platform to assess executive function, working memory and pattern separation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart overview of pretraining stages 2–5.
Figure 2: Flowchart overview of the visual discrimination task.
Figure 3: Stimulus pairs recommended for use in visual discrimination and reversal learning.
Figure 4: Flowchart overview of object-location paired-associates learning task.
Figure 5: The six possible trial types in the object-location paired-associates learning task.
Figure 6: Flowchart overview of the VMCL task.
Figure 7: VMCL discriminative stimuli.
Figure 8: Flowchart overview of the autoshaping task.
Figure 9: Illustrations of Campden Instruments touchscreen chamber apparatus.
Figure 10: Annotated photographs of a Campden Instruments rat touchscreen chamber.
Figure 11: Visual discrimination acquisition.
Figure 12: Data from the autoshaping task.

Similar content being viewed by others

References

  1. Bussey, T.J. et al. New translational assays for preclinical modelling of cognition in schizophrenia: The touchscreen testing method for mice and rats. Neuropharmacology 62, 1191–1203 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Bussey, T.J., Muir, J.L. & Robbins, T.W. A novel automated touchscreen procedure for assessing learning in the rat using computer graphic stimuli. Neurosci. Res. Commun. 15, 103–110 (1994).

    Google Scholar 

  3. Bussey, T.J. et al. The touchscreen cognitive testing method for rodents: how to get the best out of your rat. Learn. Mem. 15, 516–523 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Oomen, C.A. et al. The touchscreen operant platform for testing working memory and pattern separation in rats and mice. Nat. Protoc. 8, 2006–2021 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mar, A.C. et al. The touchscreen operant platform for testing executive function in rats and mice. Nat. Protoc. 8, 1985–2005 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Romberg, C., Horner, A.E., Bussey, T.J. & Saksida, L.M. A touch screen-automated cognitive test battery reveals impaired attention, memory abnormalities, and increased response inhibition in the TgCRND8 mouse model of Alzheimer's disease. Neurobiol. Aging 34, 731–744 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Romberg, C., Mattson, M.P., Mughal, M.R., Bussey, T.J. & Saksida, L.M. Impaired attention in the 3xTgAD mouse model of Alzheimer's disease: rescue by donepezil (Aricept). J. Neurosci. 31, 3500–3507 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nithianantharajah, J. et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat. Neurosci. 16, 16–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Brigman, J.L., Ihne, J., Saksida, L.M., Bussey, T.J. & Holmes, A. Effects of subchronic phencyclidine (PCP) treatment on social behaviors, and operant discrimination and reversal learning in C57BL/6J mice. Front. Behav. Neurosci. 3, 2 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brigman, J.L., Padukiewicz, K.E., Sutherland, M.L. & Rothblat, L.A. Executive functions in the heterozygous reeler mouse model of schizophrenia. Behav. Neurosci. 120, 984–988 (2006).

    Article  PubMed  Google Scholar 

  11. Morton, A.J., Skillings, E., Bussey, T.J. & Saksida, L.M. Measuring cognitive deficits in disabled mice using an automated interactive touchscreen system. Nat. Methods 3, 767 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Creer, D.J., Romberg, C., Saksida, L.M., van Praag, H. & Bussey, T.J. Running enhances spatial pattern separation in mice. Proc. Natl. Acad. Sci. USA 107, 2367–2372 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Graybeal, C. et al. Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF. Nat. Neurosci. 14, 1507–1509 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Izquierdo, A. et al. Reversal-specific learning impairments after a binge regimen of methamphetamine in rats: possible involvement of striatal dopamine. Neuropsychopharmacology 35, 505–514 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Aggleton, J.P., Keen, S., Warburton, E.C. & Bussey, T.J. Extensive cytotoxic lesions involving both the rhinal cortices and area TE impair recognition but spare spatial alternation in the rat. Brain Res. Bull. 43, 279–287 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Bussey, T.J., Dias, R., Amin, E., Muir, J.L. & Aggleton, J.P. Perirhinal cortex and place-object conditional learning in the rat. Behav. Neurosci. 115, 776–785 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Bussey, T.J. et al. Intact negative patterning in rats with fornix or combined perirhinal and postrhinal cortex lesions. Exp. Brain Res. 134, 506–519 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Winters, B.D., Bartko, S.J., Saksida, L.M. & Bussey, T.J. Muscimol, AP5, or scopolamine infused into perirhinal cortex impairs two-choice visual discrimination learning in rats. Neurobiol. Learn. Mem. 93, 221–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Brigman, J.L. & Rothblat, L.A. Stimulus specific deficit on visual reversal learning after lesions of medial prefrontal cortex in the mouse. Behav. Brain Res. 187, 405–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Christakou, A., Robbins, T.W. & Everitt, B.J. Functional disconnection of a prefrontal cortical-dorsal striatal system disrupts choice reaction time performance: implications for attentional function. Behav. Neurosci. 115, 812–825 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Christakou, A., Robbins, T.W. & Everitt, B.J. Prolonged neglect following unilateral disruption of a prefrontal cortical-dorsal striatal system. Eur. J. Neurosci. 21, 782–792 (2005).

    Article  PubMed  Google Scholar 

  22. Bussey, T.J., Everitt, B.J. & Robbins, T.W. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion. Behav. Neurosci. 111, 908–919 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Bussey, T.J., Muir, J.L., Everitt, B.J. & Robbins, T.W. Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behav. Neurosci. 111, 920–936 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Cardinal, R.N. et al. Role of the anterior cingulate cortex in the control over behavior by Pavlovian conditioned stimuli in rats. Behav. Neurosci. 117, 566–587 (2003).

    Article  PubMed  Google Scholar 

  25. Cardinal, R.N. et al. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav. Neurosci. 116, 553–567 (2002).

    Article  PubMed  Google Scholar 

  26. Parkinson, J.A., Willoughby, P.J., Robbins, T.W. & Everitt, B.J. Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems. Behav. Neurosci. 114, 42–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Abela, A.R. & Chudasama, Y. Dissociable contributions of the ventral hippocampus and orbitofrontal cortex to decision-making with a delayed or uncertain outcome. Eur. J. Neurosci 37, 640–647 (2013).

    Article  PubMed  Google Scholar 

  28. Chudasama, Y. & Robbins, T.W. Dissociable contributions of the orbitofrontal and infralimbic cortex to Pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J. Neurosci. 23, 8771–8780 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chudasama, Y. & Muir, J.L. Visual attention in the rat: a role for the prelimbic cortex and thalamic nuclei? Behav. Neurosci. 115, 417–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Dalley, J.W. et al. Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 102, 6189–6194 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dalley, J.W. et al. Nucleus accumbens dopamine and discriminated approach learning: interactive effects of 6-hydroxydopamine lesions and systemic apomorphine administration. Psychopharmacology (Berl.) 161, 425–433 (2002).

    Article  CAS  Google Scholar 

  32. Parkinson, J.A., Robbins, T.W. & Everitt, B.J. Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. Eur. J. Neurosci. 12, 405–413 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Winstanley, C.A., Baunez, C., Theobald, D.E. & Robbins, T.W. Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: the importance of the basal ganglia in Pavlovian conditioning and impulse control. Eur. J. Neurosci. 21, 3107–3116 (2005).

    Article  PubMed  Google Scholar 

  34. Bussey, T.J., Clea Warburton, E., Aggleton, J.P. & Muir, J.L. Fornix lesions can facilitate acquisition of the transverse patterning task: a challenge for 'configural' theories of hippocampal function. J. Neurosci. 18, 1622–1631 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abela, A.R., Dougherty, S.D., Fagen, E.D., Hill, C.J. & Chudasama, Y. Inhibitory control deficits in rats with ventral hippocampal lesions. Cereb. Cortex 23, 1396–1409 (2013).

    Article  PubMed  Google Scholar 

  36. Ito, R., Everitt, B.J. & Robbins, T.W. The hippocampus and appetitive Pavlovian conditioning: effects of excitotoxic hippocampal lesions on conditioned locomotor activity and autoshaping. Hippocampus 15, 713–721 (2005).

    Article  PubMed  Google Scholar 

  37. Kim, S., Lee, J. & Lee, I. The hippocampus is required for visually cued contextual response selection, but not for visual discrimination of contexts. Front. Behav. Neurosci. 6, 66 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. McTighe, S.M., Mar, A.C., Romberg, C., Bussey, T.J. & Saksida, L.M. A new touchscreen test of pattern separation: effect of hippocampal lesions. Neuroreport 20, 881–885 (2009).

    Article  PubMed  Google Scholar 

  39. Talpos, J.C., Dias, R., Bussey, T.J. & Saksida, L.M. Hippocampal lesions in rats impair learning and memory for locations on a touch-sensitive computer screen: the 'ASAT' task. Behav. Brain Res. 192, 216–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Talpos, J.C., McTighe, S.M., Dias, R., Saksida, L.M. & Bussey, T.J. Trial-unique, delayed nonmatching-to-location (TUNL): a novel, highly hippocampus-dependent automated touchscreen test of location memory and pattern separation. Neurobiol. Learn. Mem. 94, 341–352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Talpos, J.C., Winters, B.D., Dias, R., Saksida, L.M. & Bussey, T.J. A novel touchscreen-automated paired-associate learning (PAL) task sensitive to pharmacological manipulation of the hippocampus: a translational rodent model of cognitive impairments in neurodegenerative disease. Psychopharmacology (Berl) 205, 157–168 (2009).

    Article  CAS  Google Scholar 

  42. Inglis, W.L., Olmstead, M.C. & Robbins, T.W. Pedunculopontine tegmental nucleus lesions impair stimulus--reward learning in autoshaping and conditioned reinforcement paradigms. Behav. Neurosci. 114, 285–294 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Janisiewicz, A.M. & Baxter, M.G. Transfer effects and conditional learning in rats with selective lesions of medial septal/diagonal band cholinergic neurons. Behav. Neurosci. 117, 1342–1352 (2003).

    Article  PubMed  Google Scholar 

  44. Botly, L.C. & De Rosa, E. Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention. Cereb. Cortex 22, 2441–2453 (2012).

    Article  PubMed  Google Scholar 

  45. Bartko, S.J., Vendrell, I., Saksida, L.M. & Bussey, T.J. A computer-automated touchscreen paired-associates learning (PAL) task for mice: impairments following administration of scopolamine or dicyclomine and improvements following donepezil. Psychopharmacology (Berl) 214, 537–548 (2011).

    Article  CAS  Google Scholar 

  46. Chen, W.S., Wong, F.K., Chapman, P.F. & Pemberton, D.J. Effect of donepezil on reversal learning in a touch screen-based operant task. Behav. Pharmacol. 20, 653–656 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. McCarthy, A.D. et al. FK962 and donepezil act synergistically to improve cognition in rats: potential as an add-on therapy for Alzheimer's disease. Pharmacol. Biochem. Behav. 98, 76–80 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Talpos, J.C., Fletcher, A.C., Circelli, C., Tricklebank, M.D. & Dix, S.L. The pharmacological sensitivity of a touchscreen-based visual discrimination task in the rat using simple and perceptually challenging stimuli. Psychopharmacology (Berl.) 221, 437–449 (2012).

    Article  CAS  Google Scholar 

  49. Izquierdo, A. et al. Genetic and dopaminergic modulation of reversal learning in a touchscreen-based operant procedure for mice. Behav. Brain Res. 171, 181–188 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Steckler, T. & Sahgal, A. Psychopharmacological studies in rats responding at touch-sensitive devices. Psychopharmacology (Berl.) 118, 226–229 (1995).

    Article  CAS  Google Scholar 

  51. Brigman, J.L. et al. Pharmacological or genetic inactivation of the serotonin transporter improves reversal learning in mice. Cereb. Cortex 20, 1955–1963 (2010).

    Article  PubMed  Google Scholar 

  52. Izquierdo, A. et al. Impaired reward learning and intact motivation after serotonin depletion in rats. Behav. Brain Res. 233, 494–499 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Winstanley, C.A., Dalley, J.W., Theobald, D.E. & Robbins, T.W. Fractionating impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behavior. Neuropsychopharmacology 29, 1331–1343 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Coba, M.P. et al. TNiK is required for postsynaptic and nuclear signaling pathways and cognitive function. J. Neurosci. 32, 13987–13999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karlsson, R.M. et al. Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology 34, 1578–1589 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Bartko, S.J. et al. Intact attentional processing but abnormal responding in M1 muscarinic receptor-deficient mice using an automated touchscreen method. Neuropharmacology 61, 1366–1378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brigman, J.L. et al. Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit. Learn. Mem. 15, 50–54 (2008).

    Article  PubMed  Google Scholar 

  58. Barkus, C. et al. Do GluA1 knockout mice exhibit behavioral abnormalities relevant to the negative or cognitive symptoms of schizophrenia and schizoaffective disorder? Neuropharmacology 62, 1263–1272 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Ryan, T.J. et al. Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior. Nat. Neurosci. 16, 25–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Clelland, C.D. et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210–213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Minini, L. & Jeffery, K.J. Do rats use shape to solve 'shape discriminations'? Learn. Mem. 13, 287–297 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Brigman, J.L. et al. GluN2B in corticostriatal circuits governs choice learning and choice shifting. Nat. Neurosci. 16, 1101–1110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bussey, T.J., Saksida, L.M. & Rothblat, L.A. Discrimination of computer-graphic stimuli by mice: a method for the behavioral characterization of transgenic and gene-knockout models. Behav. Neurosci. 115, 957–960 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Morrison, S.K. & Brown, M.F. The touch screen system in the pigeon laboratory: an initial evaluation of its utility. Behav. Res. Methods Instrum. Comput. 22, 123–126 (1990).

    Article  Google Scholar 

  65. Leising, K.J., Wolf, J.E. & Ruprecht, C.M. Visual discrimination learning with an iPad-equipped apparatus. Behav. Process. 93, 140–147 (2013).

    Article  Google Scholar 

  66. Roberts, A.C., Robbins, T.W. & Everitt, B.J. The effects of intradimensional and extradimensional shifts on visual discrimination learning in humans and non-human primates. Q. J. Exp. Psychol. B 40, 321–341 (1988).

    CAS  PubMed  Google Scholar 

  67. Gaffan, D. et al. Effects of fornix transection upon associative memory in monkeys: role of the hippocampus in learned action. Q. J. Exp. Psychol. B 36, 173–221 (1984).

    Article  CAS  PubMed  Google Scholar 

  68. Sahgal, A. & Steckler, T. TouchWindows and operant behaviour in rats. J. Neurosci. Methods 55, 59–64 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Jones, B. & Mishkin, M. Limbic lesions and the problem of stimulus—reinforcement associations. Exp. Neurol. 36, 362–377 (1972).

    Article  CAS  PubMed  Google Scholar 

  70. Brigman, J.L., Bussey, T.J., Saksida, L.M. & Rothblat, L.A. Discrimination of multidimensional visual stimuli by mice: intra- and extradimensional shifts. Behav. Neurosci. 119, 839–842 (2005).

    Article  PubMed  Google Scholar 

  71. Markham, M.R., Butt, A.E. & Dougher, M.J. A computer touch-screen apparatus for training visual discriminations in rats. J. Exp. Anal. Behav. 65, 173–182 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bussey, T.J., Muir, J.L., Everitt, B.J. & Robbins, T.W. Dissociable effects of anterior and posterior cingulate cortex lesions on the acquisition of a conditional visual discrimination: facilitation of early learning vs. impairment of late learning. Behav. Brain Res. 82, 45–56 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Muir, J.L., Bussey, T.J., Everitt, B.J. & Robbins, T.W. Dissociable effects of AMPA-induced lesions of the vertical limb diagonal band of Broca on performance of the 5-choice serial reaction time task and on acquisition of a conditional visual discrimination. Behav. Brain Res. 82, 31–44 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Chudasama, Y., Bussey, T.J. & Muir, J.L. Effects of selective thalamic and prelimbic cortex lesions on two types of visual discrimination and reversal learning. Eur. J. Neurosci. 14, 1009–1020 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Sahakian, B.J. et al. A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson's disease. Brain 111, 695–718 (1988).

    Article  PubMed  Google Scholar 

  76. Stip, E. et al. Cognitive discernible factors between schizophrenia and schizoaffective disorder. Brain Cogn. 59, 292–295 (2005).

    Article  PubMed  Google Scholar 

  77. Barnett, J.H. et al. Assessing cognitive function in clinical trials of schizophrenia. Neurosci. Biobehav. Rev. 34, 1161–1177 (2010).

    Article  PubMed  Google Scholar 

  78. Barnett, J.H. et al. Visuospatial learning and executive function are independently impaired in first-episode psychosis. Psychol. Med. 35, 1031–1041 (2005).

    Article  PubMed  Google Scholar 

  79. Lange, K.W., Sahakian, B.J., Quinn, N.P., Marsden, C.D. & Robbins, T.W. Comparison of executive and visuospatial memory function in Huntington's disease and dementia of Alzheimer type matched for degree of dementia. J. Neurol. Neurosurg. Psychiatry 58, 598–606 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Porter, R.J., Gallagher, P., Thompson, J.M. & Young, A.H. Neurocognitive impairment in drug-free patients with major depressive disorder. Br. J. Psychiatry 182, 214–220 (2003).

    Article  PubMed  Google Scholar 

  81. Sweeney, J.A., Kmiec, J.A. & Kupfer, D.J. Neuropsychologic impairments in bipolar and unipolar mood disorders on the CANTAB neurocognitive battery. Biol. Psychiatry 48, 674–684 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Sahakian, B.J. et al. Sparing of attentional relative to mnemonic function in a subgroup of patients with dementia of the Alzheimer type. Neuropsychologia 28, 1197–1213 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Sahgal, A. et al. Detection of visual memory and learning deficits in Alzheimer's disease using the Cambridge Neuropsychological Test Automated Battery. Dementia 2, 150–158 (1991).

    Google Scholar 

  84. Fowler, K.S., Saling, M.M., Conway, E.L., Semple, J.M. & Louis, W.J. Computerized neuropsychological tests in the early detection of dementia: prospective findings. J. Int. Neuropsychol. Soc. 3, 139–146 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Blackwell, A.D. et al. Detecting dementia: novel neuropsychological markers of preclinical Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 17, 42–48 (2004).

    Article  PubMed  Google Scholar 

  86. Swainson, R. et al. Early detection and differential diagnosis of Alzheimer's disease and depression with neuropsychological tasks. Dement. Geriatr. Cogn. Disord. 12, 265–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Milner, B., Johnsrude, I. & Crane, J. Right medial temporal-lobe contribution to object-location memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1469–1474 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Owen, A.M., Sahakian, B.J., Semple, J., Polkey, C.E. & Robbins, T.W. Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 33, 1–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Simons, J.S. & Spiers, H.J. Prefrontal and medial temporal lobe interactions in long-term memory. Nat. Rev. Neurosci. 4, 637–648 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. McAllister, K.A., Saksida, L.M. & Bussey, T.J. Dissociation between memory retention across a delay and pattern separation following medial prefrontal cortex lesions in the touchscreen TUNL task. Neurobiol. Learn. Mem. 101, 120–126 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Talpos, J.C. in Proceedings of Measuring Behavior 2012, 8th International Conference on Methods and Techniques in Behavioral Research (Utrecht, The Netherlands, August 28–31, 2012) (eds. Spink, A.J. et al.)(Noldus Information Technology, 2012).

  92. Murray, E.A., Bussey, T.J. & Wise, S.P. Role of prefrontal cortex in a network for arbitrary visuomotor mapping. Exp. Brain Res. 133, 114–129 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Sziklas, V., Petrides, M. & Leri, F. The effects of lesions to the mammillary region and the hippocampus on conditional associative learning by rats. Eur. J. Neurosci. 8, 106–115 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Brasted, P.J., Bussey, T.J., Murray, E.A. & Wise, S.P. Role of the hippocampal system in associative learning beyond the spatial domain. Brain 126, 1202–1223 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Reading, P.J., Dunnett, S.B. & Robbins, T.W. Dissociable roles of the ventral, medial and lateral striatum on the acquisition and performance of a complex visual stimulus-response habit. Behav. Brain Res. 45, 147–161 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Marston, H.M., Everitt, B.J. & Robbins, T.W. Comparative effects of excitotoxic lesions of the hippocampus and septum/diagonal band on conditional visual discrimination and spatial learning. Neuropsychologia 31, 1099–1118 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Bussey, T.J., Duck, J., Muir, J.L. & Aggleton, J.P. Distinct patterns of behavioural impairments resulting from fornix transection or neurotoxic lesions of the perirhinal and postrhinal cortices in the rat. Behav. Brain Res. 111, 187–202 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Hay, J.F., Moscovitch, M. & Levine, B. Dissociating habit and recollection: evidence from Parkinson's disease, amnesia and focal lesion patients. Neuropsychologia 40, 1324–1334 (2002).

    Article  PubMed  Google Scholar 

  99. Witt, K., Nuhsman, A. & Deuschl, G. Dissociation of habit-learning in Parkinson's and cerebellar disease. J. Cogn. Neurosci. 14, 493–499 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Brown, P.L. & Jenkins, H.M. Auto-shaping of the pigeon's key-peck. J. Exp. Anal. Behav. 11, 1–8 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wilcove, W.G. & Miller, J.C. CS-USC presentations and a lever: human autoshaping. J. Exp. Psychol. 103, 868–877 (1974).

    Article  CAS  PubMed  Google Scholar 

  102. Sidman, M. & Fletcher, F.G. A demonstration of auto-shaping with monkeys. J. Exp. Anal. Behav. 11, 307–309 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wasserman, E.A. Pavlovian conditioning with heat reinforcement produces stimulus-directed pecking in chicks. Science 181, 875–877 (1973).

    Article  CAS  PubMed  Google Scholar 

  104. Jenkins, H.M., Barrera, F.J., Ireland, C. & Woodside, B. Signal-centered action patterns of dogs in appetitive classical conditioning. Learn. Motiv. 9, 272–296 (1978).

    Article  Google Scholar 

  105. Stiers, M. & Silberberg, A. Lever-contact responses in rats: automaintenance with and without a negative response-reinforcer dependency. J. Exp. Anal. Behav. 22, 497–506 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cleland, G.G. & Davey, G.C. Autoshaping in the rat: the effects of localizable visual and auditory signals for food. J. Exp. Anal. Behav. 40, 47–56 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Di Ciano, P., Cardinal, R.N., Cowell, R.A., Little, S.J. & Everitt, B.J. Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of Pavlovian approach behavior. J. Neurosci. 21, 9471–9477 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Williams, D.R. & Williams, H. Auto-maintenance in the pigeon: sustained pecking despite contingent non-reinforcement. J. Exp. Anal. Behav. 12, 511–520 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Parkinson, J.A. et al. Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function. Behav. Brain Res. 137, 149–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Brog, J.S., Salyapongse, A., Deutch, A.Y. & Zahm, D.S. The patterns of afferent innervation of the core and shell in the 'accumbens' part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J. Comp. Neurol. 338, 255–278 (1993).

    Article  CAS  PubMed  Google Scholar 

  111. Danna, C.L. & Elmer, G.I. Disruption of conditioned reward association by typical and atypical antipsychotics. Pharmacol. Biochem. Behav. 96, 40–47 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Coyle, J.T., Basu, A., Benneyworth, M., Balu, D. & Konopaske, G. Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications. Handb. Exp. Pharmacol. 267–295 (2012).

  113. Goto, Y. & Grace, A.A. The dopamine system and the pathophysiology of schizophrenia: a basic science perspective. Int. Rev. Neurobiol. 78, 41–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Flagel, S.B., Watson, S.J., Robinson, T.E. & Akil, H. Individual differences in the propensity to approach signals vs. goals promote different adaptations in the dopamine system of rats. Psychopharmacology (Berl.) 191, 599–607 (2007).

    Article  CAS  Google Scholar 

  115. Flagel, S.B., Watson, S.J., Akil, H. & Robinson, T.E. Individual differences in the attribution of incentive salience to a reward-related cue: influence on cocaine sensitization. Behav. Brain Res. 186, 48–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Muir, J.L. Attention and stimulus processing in the rat. Brain Res. Cogn. Brain Res. 3, 215–225 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Clark, R.E., Reinagel, P., Broadbent, N.J., Flister, E.D. & Squire, L.R. Intact performance on feature-ambiguous discriminations in rats with lesions of the perirhinal cortex. Neuron 70, 132–140 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cook, R.G., Geller, A.I., Zhang, G.R. & Gowda, R. Touchscreen-enhanced visual learning in rats. Behav. Res. Methods Instrum. Comput. 36, 101–106 (2004).

    Article  PubMed  Google Scholar 

  119. Frick, K.M. & Berger-Sweeney, J. Spatial reference memory and neocortical neurochemistry vary with the estrous cycle in C57BL/6 mice. Behav. Neurosci. 115, 229–237 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Meziane, H., Ouagazzal, A.M., Aubert, L., Wietrzych, M. & Krezel, W. Estrous cycle effects on behavior of C57BL/6J and BALB/cByJ female mice: implications for phenotyping strategies. Genes Brain Behav. 6, 192–200 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Lederle, L. et al. Reward-related behavioral paradigms for addiction research in the mouse: performance of common inbred strains. PLoS ONE 6, e15536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Beeler, J.A., Prendergast, B. & Zhuang, X. Low amplitude entrainment of mice and the impact of circadian phase on behavior tests. Physiol. Behav. 87, 870–880 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Roedel, A., Storch, C., Holsboer, F. & Ohl, F. Effects of light or dark phase testing on behavioral and cognitive performance in DBA mice. Lab Anim. 40, 371–381 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Chaudhury, D. & Colwell, C.S. Circadian modulation of learning and memory in fear-conditioned mice. Behav. Brain Res. 133, 95–108 (2002).

    Article  PubMed  Google Scholar 

  125. Satoh, Y., Kawai, H., Kudo, N., Kawashima, Y. & Mitsumoto, A. Temperature rhythm reentrains faster than locomotor rhythm after a light phase shift. Physiol. Behav. 88, 404–410 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Cardinal, R.N. & Aitken, M.R. Whisker: a client-server high-performance multimedia research control system. Behav. Res. Methods 42, 1059–1071 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The protocols described here are those that are currently used in our laboratory, and they were written by current members of the group. However, many researchers have contributed to the development of touchscreen tasks, and we gratefully acknowledge their contribution. They include S. Bartko, J. Brigman, S. Forwood, C. Graybeal, A. Izquierdo, L. Lyon, A. Marti, K. McAllister, S. McTighe, J. Nithianantharajah, C. Romberg, J. Talpos and B. Winters. The research leading to these results has received support from the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008, of which resources are composed of a European Federation of Pharmaceutical Industries and Associations in-kind contribution and financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013); the Wellcome Trust/Medical Research Council (089703/Z/09/Z) and Alzheimer's Research UK (ART/PG2006/5). A.E.H. receives funding from the European Union Seventh Framework Programme under grant agreement nos. 241995 (Project 'GENCODYS') and 242167 (Project 'SYNSYS'). J.A. was supported by the Swedish Academy of Pharmaceutical Sciences. A.H. was supported by the NIAAA Intramural Research Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this manuscript. A.E.H. coordinated this effort.

Corresponding author

Correspondence to Alexa E Horner.

Ethics declarations

Competing interests

L.M.S. and T.J.B. consult for Campden Instruments, Ltd. A.E.H. is an employee of Synome, Ltd.

Supplementary information

Supplementary Data 1

Raw data for visual discrimination acquisition of 10-month-old sham-lesioned control rats (n = 10, with a history of PAL and TUNL) using photographic stimuli (C.A.O., unpublished data). These data were used to plot the graph in Figure 11. (XLSX 12 kb)

Supplementary Video 1

A mouse performing the visual discrimination task with “lines-grid” stimuli in the touchscreen apparatus by Campden Instruments, Ltd. (AVI 14552 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horner, A., Heath, C., Hvoslef-Eide, M. et al. The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc 8, 1961–1984 (2013). https://doi.org/10.1038/nprot.2013.122

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.122

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing