Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Genome-wide measurement of protein-DNA binding dynamics using competition ChIP

Abstract

Competition chromatin immunoprecipitation (competition ChIP) enables experimenters to measure protein-DNA dynamics at a single locus or across the entire genome, depending on the detection method. Competition ChIP relies on a cell containing two copies of a single DNA-associated factor, with each copy of the factor differentially epitope tagged. One of the copies is expressed constitutively and the second is induced as a competitor. The ratio of isoforms associated with discrete genomic locations is detected by ChIP-on-chip (ChIP-chip) or ChIP-sequencing (ChIP-seq). The rate at which the resident isoform of the protein is replaced by the competitor at each binding location enables the calculation of residence time for that factor at each site of interaction genome wide. Here we provide a detailed protocol for designing and performing competition ChIP experiments in Saccharomyces cerevisiae, which takes 5 d to complete (not including strain production and characterizations, which may take as long as 6 months). Included in this protocol are guidelines for downstream bioinformatic analysis to extract residence times throughout the genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General competition ChIP workflow.
Figure 2: Anticipated results from a competition ChIP experiment.

Similar content being viewed by others

References

  1. Hager, G.L., McNally, J.G. & Misteli, T. Transcription dynamics. Mol. Cell 35, 741–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lieb, J.D., Liu, X., Botstein, D. & Brown, P.O. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat. Genet. 28, 327–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Rhee, H.S. & Pugh, B.F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147, 1408–1419 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lickwar, C.R., Mueller, F., Hanlon, S.E., McNally, J.G. & Lieb, J.D. Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484, 251–255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dion, M.F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405–1408 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Voss, T.C. et al. Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell 146, 544–554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Radman-Livaja, M. et al. Patterns and mechanisms of ancestral histone protein inheritance in budding yeast. PLoS Biol. 9, e1001075 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rufiange, A., Jacques, P.E., Bhat, W., Robert, F. & Nourani, A. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol. Cell 27, 393–405 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Schermer, U.J., Korber, P. & Horz, W. Histones are incorporated in trans during reassembly of the yeast PHO5 promoter. Mol. Cell 19, 279–285 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. van Werven, F.J., van Teeffelen, H.A., Holstege, F.C. & Timmers, H.T. Distinct promoter dynamics of the basal transcription factor TBP across the yeast genome. Nat. Struct. Mol. Biol. 16, 1043–1048 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Deal, R.B., Henikoff, J.G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karpova, T.S. et al. Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter. Science 319, 466–469 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Mazza, D., Abernathy, A., Golob, N., Morisaki, T. & McNally, J.G. A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res. 40, e119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Darzacq, X. et al. Imaging transcription in living cells. Annu. Rev. Biophys. 38, 173–196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elf, J., Li, G.W. & Xie, X.S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mueller, F., Mazza, D., Stasevich, T.J. & McNally, J.G. FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr. Opin. Cell Biol. 22, 403–411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Verzijlbergen, K.F. et al. Recombination-induced tag exchange to track old and new proteins. Proc. Natl. Acad. Sci. USA 107, 64–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Nalley, K., Johnston, S.A. & Kodadek, T. Proteolytic turnover of the Gal4 transcription factor is not required for function in vivo. Nature 442, 1054–1057 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Collins, G.A., Lipford, J.R., Deshaies, R.J. & Tansey, W.P. Gal4 turnover and transcription activation. Nature 461, E7 discussion E8 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lundblad, V. Manipulation of yeast genes. Curr. Protoc. Mol. Biol. 2, 13.7–13.11 (1997).

    Google Scholar 

  21. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. van Werven, F.J. & Timmers, H.T. The use of biotin tagging in Saccharomyces cerevisiae improves the sensitivity of chromatin immunoprecipitation. Nucleic Acids Res. 34, e33 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sopko, R. et al. Mapping pathways and phenotypes by systematic gene overexpression. Mol. Cell 21, 319–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Segal, E. & Widom, J. From DNA sequence to transcriptional behaviour: a quantitative approach. Nat. Rev. Genet. 10, 443–456 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huibregtse, J.M., Engelke, D.R. & Thiele, D.J. Copper-induced binding of cellular factors to yeast metallothionein upstream activation sequences. Proc. Natl Acad. Sci. USA 86, 65–69 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roberts, C.J. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287, 873–880 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Song, J.S. et al. Model-based analysis of two-color arrays (MA2C). Genome Biol. 8, R178 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X.S. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mattioni, T., Louvion, J.F. & Picard, D. Regulation of protein activities by fusion to steroid binding domains. Methods Cell Biol. 43 (Part A): 335–352 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Hughes, R.M., Bolger, S., Tapadia, H. & Tucker, C.L. Light-mediated control of DNA transcription in yeast. Methods 58, 385–391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lungu, O.I. et al. Designing photoswitchable peptides using the AsLOV2 domain. Chem. Biol. 19, 507–517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Potter, C.J. & Luo, L. Using the Q system in Drosophila melanogaster. Nat. Protoc. 6, 1105–1120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elliott, D.A. & Brand, A.H. The GAL4 system: a versatile system for the expression of genes. Methods Mol. Biol. 420, 79–95 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Schmiedeberg, L., Skene, P., Deaton, A. & Bird, A. A temporal threshold for formaldehyde crosslinking and fixation. PloS ONE 4, e4636 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gilmour, D.S. & Lis, J.T. In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster. Mol. Cell. Biol. 5, 2009–2018 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fujita, N. & Wade, P.A. Use of bifunctional cross-linking reagents in mapping genomic distribution of chromatin remodeling complexes. Methods 33, 81–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Zeng, P.Y., Vakoc, C.R., Chen, Z.C., Blobel, G.A. & Berger, S.L. In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. BioTechniques 41 694, 696, 698 (2006).10.2144/000112297

  40. Gelbart, M.E., Rechsteiner, T., Richmond, T.J. & Tsukiyama, T. Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilized templates. Mol. Cell. Biol. 21, 2098–2106 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ausubel, F.M. et al. (eds.) Short Protocols in Molecular Biology : a Compendium of Methods from Current Protocols in Molecular Biology, (Wiley, 2002).

  42. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoffman, C.S. Preparation of yeast DNA, RNA, and proteins. Curr. Protoc. Mol. Biol. 2, 13.11.1–13.11.4 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank L.S. Kovacs and T. Jeffers for critically reading the manuscript, K. Ikegami for suggesting alternative cross-linkers and promoter systems and D. Mckay for suggesting inducible expression systems in Drosophila. J.D.L. and C.R.L. were supported by National Institutes of Health grant no. R01 GM072518. F.M. has been supported by the Région Ile-de-France under C'Nano IdF (the Center of Competences in NanoSciences for the Paris region) and the Fondation pour la Recherche Médicale en France (FRM).

Author information

Authors and Affiliations

Authors

Contributions

C.R.L. and F.M. performed the analysis and refined the competition ChIP protocol with input from J.D.L. C.R.L., F.M. and J.D.L. wrote the manuscript.

Corresponding author

Correspondence to Jason D Lieb.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lickwar, C., Mueller, F. & Lieb, J. Genome-wide measurement of protein-DNA binding dynamics using competition ChIP. Nat Protoc 8, 1337–1353 (2013). https://doi.org/10.1038/nprot.2013.077

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.077

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing