Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation and characterization of SNARE-containing nanodiscs and direct study of cargo release through fusion pores

Abstract

This protocol describes an assay that uses suspended nanomembranes called nanodiscs to analyze fusion events. A nanodisc is a lipid bilayer wrapped by membrane scaffold proteins. Fluorescent lipids and a protein that is part of a fusion machinery, VAMP2 in the example detailed herein, are included in the nanodiscs. Upon fusion of a nanodisc with a nonfluorescent liposome containing cognate proteins (for instance, the VAMP2 cognate syntaxin1/SNAP-25 complex), the fluorescent lipids are dispersed in the liposome and the increase in fluorescence, initially quenched in the nanodisc, is monitored on a plate reader. Because the scaffold proteins restrain pore expansion, the fusion pore eventually reseals. A reducing agent, such as dithionite, which can quench the fluorescence of accessible lipids, can then be used to determine the number of fusion events. A fluorescence-based approach can also be used to monitor the release of encapsulated cargo. From data on the total cargo release and the number of the much faster lipid-mixing events, the researcher may determine the amount of cargo released per fusion event. This assay requires 3 d for preparation and 4 h for data acquisition and analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A nanodisc and a liposome-nanodisc fusion assay.
Figure 2: Nanodisc preparation and characterization.
Figure 3: Lipid-mixing and dithionite assays.
Figure 4: Content-release assays.
Figure 5: Analysis of content release.

Similar content being viewed by others

References

  1. Bonifacino, J.S. & Glick, B.S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  Google Scholar 

  2. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  3. Wickner, W. & Schekman, R. Membrane fusion. Nat. Struct. Mol. Biol. 15, 658–664 (2008).

    Article  CAS  Google Scholar 

  4. Jahn, R. & Scheller, R.H. SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  Google Scholar 

  5. Harrison, S.C. Viral membrane fusion. Nat. Struct. Mol. Biol. 15, 690–698 (2008).

    Article  CAS  Google Scholar 

  6. Friedlander-Shani, L. & Podbilewicz, B. Heterochronic control of AFF-1-mediated cell-to-cell fusion in C. elegans. Adv. Exp. Med. Biol. 713, 5–11 (2011).

    Article  CAS  Google Scholar 

  7. Youle, R.J. & van der Bliek, A.M. Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012).

    Article  CAS  Google Scholar 

  8. Fernandez-Peruchena, C., Navas, S., Montes, M.A. & Alvarez de Toledo, G. Fusion pore regulation of transmitter release. Brain Res. Brain Res. Rev. 49, 406–415 (2005).

    Article  CAS  Google Scholar 

  9. Struck, D.K., Hoekstra, D. & Pagano, R.E. Use of resonance energy-transfer to monitor membrane fusion. Biochemistry 20, 4093–4099 (1981).

    Article  CAS  Google Scholar 

  10. McNew, J.A. et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol. 150, 105–117 (2000).

    Article  CAS  Google Scholar 

  11. van den Bogaart, G. et al. One SNARE complex is sufficient for membrane fusion. Nat. Struct. Mol. Biol. 17, 358–364 (2010).

    Article  CAS  Google Scholar 

  12. Stengel, G., Zahn, R. & Hook, F. DNA-induced programmable fusion of phospholipid vesicles. J. Am. Chem. Soc. 129, 9584–9585 (2007).

    Article  CAS  Google Scholar 

  13. Scott, B.L. et al. Liposome fusion assay to monitor intracellular membrane fusion machines. Methods Enzymol. 372, 274–300 (2003).

    Article  CAS  Google Scholar 

  14. Tucker, W.C., Weber, T. & Chapman, E.R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004).

    Article  CAS  Google Scholar 

  15. Shen, J., Tareste, D.C., Paumet, F., Rothman, J.E. & Melia, T.J. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128, 183–195 (2007).

    Article  CAS  Google Scholar 

  16. Hernandez, J.M. et al. Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 336, 1581–1584 (2012).

    Article  CAS  Google Scholar 

  17. Smith, E.A. & Weisshaar, J.C. Docking, not fusion, as the rate-limiting step in a SNARE-driven vesicle fusion assay. Biophys. J. 100, 2141–2150 (2011).

    Article  CAS  Google Scholar 

  18. Ji, H. et al. Protein determinants of SNARE-mediated lipid mixing. Biophys. J. 99, 553–560 (2010).

    Article  CAS  Google Scholar 

  19. Langosch, D. et al. Peptide mimics of SNARE transmembrane segments drive membrane fusion depending on their conformational plasticity. J. Mol. Biol. 311, 709–721 (2001).

    Article  CAS  Google Scholar 

  20. Shi, L. et al. SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science 335, 1355–1359 (2012).

    Article  CAS  Google Scholar 

  21. Ritchie, T.K. et al. Chapter 11—Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231 (2009).

    Article  CAS  Google Scholar 

  22. Frauenfeld, J. et al. Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat. Struct. Mol. Biol. 18, 614–621 (2011).

    Article  CAS  Google Scholar 

  23. Katayama, H. et al. Three-dimensional structure of the anthrax toxin pore inserted into lipid nanodiscs and lipid vesicles. Proc. Natl. Acad. Sci. USA 107, 3453–3457 (2010).

    Article  CAS  Google Scholar 

  24. Brewer, K.D., Li, W., Horne, B.E. & Rizo, J. Reluctance to membrane binding enables accessibility of the synaptobrevin SNARE motif for SNARE complex formation. Proc. Natl. Acad. Sci. USA 108, 12723–12728 (2011).

    Article  CAS  Google Scholar 

  25. Imai, M., Mizuno, T. & Kawasaki, K. Membrane fusion by single influenza hemagglutinin trimers. Kinetic evidence from image analysis of hemagglutinin-reconstituted vesicles. J. Biol. Chem. 281, 12729–12735 (2006).

    Article  CAS  Google Scholar 

  26. Bayburt, T.H., Grinkova, Y.V. & Sligar, S.G. Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2, 853–856 (2002).

    Article  CAS  Google Scholar 

  27. Koppaka, V. & Axelsen, P.H. Lipoprotein A-I structure. Trends Cardiovasc. Med. 9, 192–195 (1999).

    Article  CAS  Google Scholar 

  28. Nath, A., Atkins, W.M. & Sligar, S.G. Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46, 2059–2069 (2007).

    Article  CAS  Google Scholar 

  29. Bayburt, T.H. & Sligar, S.G. Membrane protein assembly into Nanodiscs. FEBS Lett. 584, 1721–1727 (2009).

    Article  Google Scholar 

  30. Raschle, T. et al. Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J. Am. Chem. Soc. 131, 17777–17779 (2009).

    Article  CAS  Google Scholar 

  31. Boldog, T., Grimme, S., Li, M., Sligar, S.G. & Hazelbauer, G.L. Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc. Natl. Acad. Sci. USA 103, 11509–11514 (2006).

    Article  CAS  Google Scholar 

  32. McNew, J.A., Weber, T., Engelman, D.M., Sollner, T.H. & Rothman, J.E. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol. Cell 4, 415–421 (1999).

    Article  CAS  Google Scholar 

  33. Bhalla, A., Chicka, M.C., Tucker, W.C. & Chapman, E.R. Ca2+-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat. Struct. Mol. Biol. 13, 323–330 (2006).

    Article  CAS  Google Scholar 

  34. Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K. & McNew, J.A. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat. Struct. Mol. Biol. 13, 748–750 (2006).

    Article  CAS  Google Scholar 

  35. Melia, T.J. et al. Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell Biol. 158, 929–940 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a ANR-09-Blanc-0129 grant to F.P., US National Institutes of Health (NIH) grant DK027044 to J.E.R. and a Partner University Funds exchange grant between the Yale University and Ecole Normale Supérieure laboratories. We thank T. Melia for many helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

L.S., J.E.R. and F.P. designed the research. L.S., Y.J.W. and K.H. optimized the detailed protocol. Q.-T. Shen performed the electron microscopy. L.S., K.H. and F.P. analyzed the experiments. L.S., K.H., Y.J.W. and F.P. wrote the paper.

Corresponding author

Correspondence to Frédéric Pincet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, L., Howan, K., Shen, QT. et al. Preparation and characterization of SNARE-containing nanodiscs and direct study of cargo release through fusion pores. Nat Protoc 8, 935–948 (2013). https://doi.org/10.1038/nprot.2013.048

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.048

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research