Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Global metabolic profiling of animal and human tissues via UPLC-MS

Abstract

Obtaining comprehensive, untargeted metabolic profiles for complex solid samples, e.g., animal tissues, requires sample preparation and access to information-rich analytical methodologies such as mass spectrometry (MS). Here we describe a practical two-step process for tissue samples that is based on extraction into 'aqueous' and 'organic' phases for polar and nonpolar metabolites. Separation methods such as ultraperformance liquid chromatography (UPLC) in combination with MS are needed to obtain sufficient resolution to create diagnostic metabolic profiles and identify candidate biomarkers. We provide detailed protocols for sample preparation, chromatographic procedures, multivariate analysis and metabolite identification via tandem MS (MS/MS) techniques and high-resolution MS. By using these optimized approaches, analysis of a set of samples using a 96-well plate format would take 48 h: 1 h for system setup, 8–10 h for sample preparation, 34 h for UPLC-MS analysis and 2–3 h for preliminary/exploratory data processing, representing a robust method for untargeted metabolic screening of tissue samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4: Typical UPLC-MS base peak ion (BPI) chromatograms of extracted liver samples from rat.
Figure 5: PC1 versus PC2 scores plot for aqueous rat liver extracts analyzed by UPLC-MS.

Similar content being viewed by others

References

  1. Nicholson, J.K., Lindon, J.C. & Holmes, E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29, 1181–1189 (1999).

    Article  CAS  Google Scholar 

  2. Nicholson, J.K., Connelly, J., Lindon, J.C. & Holmes, E. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161 (2002).

    Article  CAS  Google Scholar 

  3. Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).

    Article  CAS  Google Scholar 

  4. Nicholson, J.K. & Lindon, J.C. Systems biology: metabonomics. Nature 455, 1054–1056 (2008).

    Article  CAS  Google Scholar 

  5. Wishart, D.S. Applications of metabolomics in drug discovery and development. Drugs R D 9, 307–322 (2008).

    Article  CAS  Google Scholar 

  6. Clarke, C.J. & Haselden, J.N. Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicol. Pathol. 36, 140–147 (2008).

    Article  CAS  Google Scholar 

  7. Gowda, G.A. et al. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn. 8, 617–633 (2008).

    Article  CAS  Google Scholar 

  8. Wilson, I.D. et al. High resolution 'ultra performance' liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J. Proteome Res. 591–598 (2005).

  9. Kinross, J.M., Darzi, A.W. & Nicholson, J.K. Gut microbiome-host interactions in health and disease. Genome Med. 3, 14 (2011).

    Article  Google Scholar 

  10. McNiven, E.M., German, J.B. & Slupsky, C.M. Analytical metabolomics: nutritional opportunities for personalized health. J. Nutr. Biochem. 22, 995–1002 (2011).

    Article  CAS  Google Scholar 

  11. Dunn, W.B., Goodacre, R., Neyses, L. & Mamas, M. Integration of metabolomics in heart disease and diabetes research: current achievements and future outlook. Bioanalysis 3, 2205–2222 (2011).

    Article  CAS  Google Scholar 

  12. Dieterle, F. et al. NMR and MS methods for metabonomics. Methods Mol. Biol. 691, 385–415 (2011).

    Article  CAS  Google Scholar 

  13. Nevedomskaya, E., Mayboroda, O.A. & Deelder, A.M. Cross-platform analysis of longitudinal data in metabolomics. Mol. Biosyst. 7, 3214–3222 (2011).

    Article  CAS  Google Scholar 

  14. Ruiz-Aracama, A. et al. An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genomics 12, 251 (2011).

    Article  CAS  Google Scholar 

  15. Lanza, I.R. et al. Quantitative metabolomics by H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS ONE 5, e10538 (2010).

    Article  Google Scholar 

  16. Beckonert, O. et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2, 2692–2703 (2007).

    Article  CAS  Google Scholar 

  17. Beckonert, O. et al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat. Protoc. 5, 1019–1032 (2010).

    Article  CAS  Google Scholar 

  18. Want, E.J. et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 5, 1005–1018 (2010).

    Article  CAS  Google Scholar 

  19. Dunn, W.B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011).

    Article  CAS  Google Scholar 

  20. Chan, E.C., Pasikanti, K.K. & Nicholson, J.K. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat. Protoc. 6, 1483–1499 (2011).

    Article  CAS  Google Scholar 

  21. Masson, P., Alves, A.C., Ebbels, T.M., Nicholson, J.K. & Want, E.J. Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS. Anal. Chem. 82, 7779–7786 (2010).

    Article  CAS  Google Scholar 

  22. Masson, P., Spagou, K., Nicholson, J.K. & Want, E.J. Technical and biological variation in UPLC-MS-based untargeted metabolic profiling of liver extracts: application in an experimental toxicity study on galactosamine. Anal Chem. 83, 1116–1123 (2011).

    Article  CAS  Google Scholar 

  23. Huang, Q. et al. Method for liver tissue metabolic profiling study and its application in type 2 diabetic rats based on ultra performance liquid chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879, 961–967 (2011).

    Article  CAS  Google Scholar 

  24. Geier, F.M., Want, E.J., Leroi, A.M. & Bundy, J.G. Cross-platform comparison of Caenorhabditis elegans tissue extraction strategies for comprehensive metabolome coverage. Anal. Chem. 83, 3730–3736 (2011).

    Article  CAS  Google Scholar 

  25. Liang, X. et al. Evaluation of homogenization techniques for the preparation of mouse tissue samples to support drug discovery. Bioanalysis 3, 1923–1933 (2011).

    Article  CAS  Google Scholar 

  26. Wu, H., Southam, A.D., Hines, A. & Viant, M.R. High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal. Biochem. 372, 204–212 (2008).

    Article  CAS  Google Scholar 

  27. Swann, J.R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4523–4530 (2011).

    Article  CAS  Google Scholar 

  28. Holmes, E., Wilson, I.D. & Nicholson, J.K. Metabolic phenotyping in health and disease. Cell 134, 714–717 (2008).

    Article  CAS  Google Scholar 

  29. Trim, P.J., Francese, S. & Clench, M.R. Imaging mass spectrometry for the assessment of drugs and metabolites in tissue. Bioanalysis 1, 309–319 (2009).

    Article  CAS  Google Scholar 

  30. Nemes, P., Barton, A.A. & Vertes, A. Three-dimensional imaging of metabolites in tissues under ambient conditions by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 81, 6668–6675 (2009).

    Article  CAS  Google Scholar 

  31. Halket, J.M. et al. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Botany 56, 219–243 (2005).

    Article  CAS  Google Scholar 

  32. Tolstikov, V.V. & Fiehn, O. Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal. Biochem. 301, 298–307 (2002).

    Article  CAS  Google Scholar 

  33. Idborg, H., Zamani, L., Schuppe-Koistinen, I. & Jacobsson, S. Metabolic fingerprinting of rat urine by LC/MS Part 1. Analysis by hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. B. 828, 9–13 (2005).

    Article  CAS  Google Scholar 

  34. Cubbon, S., Bradbury, T., Wilson, J. & Thomas-Oates, J. Hydrophilic interaction chromatography for mass spectrometric metabonomic studies of urine. Anal. Chem. 79, 8911–8918 (2007).

    Article  CAS  Google Scholar 

  35. Spagou, K. et al. HILIC-UPLC-MS for exploratory urinary metabolic profiling in toxicological studies. Anal. Chem. 83, 382–390 (2011).

    Article  CAS  Google Scholar 

  36. Gika, H.G., Theodoridis, G.A. & Wilson, I.D. Hydrophilic interaction and reversed-phase ultra-performance liquid chromatography TOF-MS for metabonomic analysis of Zucker rat urine. J. Sep. Sci. 31, 1598–1608 (2008).

    Article  CAS  Google Scholar 

  37. Loftus, N. et al. Metabonomic investigation of liver profiles of nonpolar metabolites obtained from alcohol-dosed rats and mice using high mass accuracy MSn analysis. J. Proteome Res. 10, 705–713 (2011).

    Article  CAS  Google Scholar 

  38. Surowiec, I., Koc, M., Antti, H., Wikström, P. & Moritz, T. LC-MS/MS profiling for detection of endogenous steroids and prostaglandins in tissue samples. J. Sep. Sci. 34, 2650–2658 (2011).

    Article  CAS  Google Scholar 

  39. Aaltonen, N., Laitinen, J.T. & Lehtonen, M. Quantification of lysophosphatidic acids in rat brain tissue by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878, 1145–1152 (2010).

    Article  CAS  Google Scholar 

  40. Lenz, E.M., Bright, J., Knight, R., Wilson, I.D. & Major, H. A metabonomic investigation of the biochemical effects of mercuric chloride in the rat using 1H NMR and HPLC-TOF/MS: time dependant changes in the urinary profile of endogenous metabolites as a result of nephrotoxicity. Analyst 129, 535–541 (2004).

    Article  CAS  Google Scholar 

  41. Nordström, A., Want, E., Northen, T., Lehtiö, J. & Siuzdak, G. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Anal. Chem. 80, 421–429 (2008).

    Article  Google Scholar 

  42. Leandro, C.C., Hancock, P., Fussell, R.J. & Keely, B.J. Ultra-performance liquid chromatography for the determination of pesticide residues in foods by tandem quadrupole mass spectrometry with polarity switching. J. Chromatogr. A 1144, 161–169 (2007).

    Article  CAS  Google Scholar 

  43. Gika, H.G., Theodoridis, G.A., Wingate, J.E. & Wilson, I.D. Within day reproducibility of an HPLC-MS-based method for metabonomic analysis: application to human urine. J. Proteome Res. 6, 3291–3303 (2007).

    Article  CAS  Google Scholar 

  44. Gika, H.G., Macpherson, E., Theodoridis, G. & Wilson, I.D. Evaluation of the repeatability of ultra-performance liquid chromatography-TOF-MS for global metabolic profiling of human urine samples. J. Chromatogr. B 871, 299–305 (2008).

    Article  CAS  Google Scholar 

  45. Baker, J.M. et al. A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnol. J. 4, 381–392 (2006).

    Article  CAS  Google Scholar 

  46. Sangster, T., Major, H., Plumb, R., Wilson, A.J. & Wilson, I.D. A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst 131, 1075–1078 (2006).

    Article  CAS  Google Scholar 

  47. Pham-Tuan, H., Kaskavelis, L., Daykin, C.A. & Janssen, H.-G. Method development in high-performance liquid chromatography for high-throughput profiling and metabonomic studies of biofluid samples. J. Chromatogr. B 789, 283–301 (2003).

    Article  CAS  Google Scholar 

  48. Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  Google Scholar 

  49. Katajamaa, M., Miettinen, J. & Oresic, M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634–636 (2006).

    Article  CAS  Google Scholar 

  50. Duran, A.L., Yang, J., Wang, L.J. & Sumner, L.W. Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19, 2283–2293 (2003).

    Article  CAS  Google Scholar 

  51. Baran, R. et al. MathDAMP: a package for differential analysis of metabolite profiles. BMC Bioinformatics 7, 530–538 (2006).

    Article  Google Scholar 

  52. Broeckling, C.D., Reddy, I.R., Duran, A.L., Zhao, X.C. & Sumner, L.W. MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Anal. Chem. 78, 4334–4341 (2006).

    Article  CAS  Google Scholar 

  53. Katajamaa, M. & Oresic, M.J. Data processing for mass spectrometry-based metabolomics. Chromatogr. A 1158, 318–328 (2007).

    Article  CAS  Google Scholar 

  54. Sumner, L.W., Urbanczyk-Wochniak, E. & Broeckling, C.D. Metabolomics data analysis, visualization, and integration. Methods Mol. Biol. 406, 409–436 (2007).

    CAS  PubMed  Google Scholar 

  55. Issaq, H.J, Van, Q.N., Waybright, T.J., Muschik, G.M. & Veenstra, T.D. Analytical and statistical approaches to metabolomics research. J. Sep. Sci. 32, 2183–2199 (2009).

    Article  CAS  Google Scholar 

  56. Want, E. & Masson, P. Processing and analysis of GC/LC-MS-based metabolomics data. Methods Mol. Biol. 708, 277–298 (2011).

    Article  CAS  Google Scholar 

  57. Scalbert, A. et al. Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 5, 435–458 (2009).

    Article  CAS  Google Scholar 

  58. Little, J.L., Williams, A.J., Pshenichnov, A. & Tkachenko, V. Identification of “known unknowns” utilizing accurate mass data and ChemSpider. J. Am. Soc. Mass Spectrom. 23, 179–185 (2012).

    Article  CAS  Google Scholar 

  59. Wishart, D.S. et al. HMDB: the human metabolome database. Nucleic Acids Res. 35 (Database issue): D521–D526 (2007).

    Article  CAS  Google Scholar 

  60. Wishart, D.S. et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37 (Database issue): D603–D610 (2009).

    Article  CAS  Google Scholar 

  61. Smith, C.A. et al. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).

    Article  CAS  Google Scholar 

  62. Draper, J. et al. Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour 'rules'. BMC Bioinformatics 10, 227 (2009).

    Article  Google Scholar 

  63. Plumb, R.S. et al. Application of ultra performance liquid chromatography-mass spectrometry to profiling rat and dog bile. J. Proteome Res. 8, 2495–2500 (2009).

    Article  CAS  Google Scholar 

  64. Saghatelian, A. et al. Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry 43, 14332–14339 (2004).

    Article  CAS  Google Scholar 

  65. Ruan, Q. et al. An integrated method for metabolite detection and identification using a linear ion trap/Orbitrap mass spectrometer and multiple data processing techniques: application to indinavir metabolite detection. J. Mass Spectrom. 43, 251–261 (2008).

    Article  CAS  Google Scholar 

  66. Zhang, N.R. et al. Quantitation of small molecules using high-resolution accurate mass spectrometers—a different approach for analysis of biological samples. Rapid Commun. Mass Spectrom. 23, 1085–1094 (2009).

    Article  CAS  Google Scholar 

  67. Ohta, D., Shibata, D. & Kanaya, S. Metabolic profiling using Fourier-transform ion-cyclotron-resonance mass spectrometry. Anal. Bioanal. Chem. 389, 1469–1475 (2007).

    Article  CAS  Google Scholar 

  68. Ipsen, A., Want, E.J. & Ebbels, T.M. Construction of confidence regions for isotopic abundance patterns in LC/MS data sets for rigorous determination of molecular formulas. Anal. Chem. 82, 7319–7328 (2010).

    Article  CAS  Google Scholar 

  69. Ipsen, A., Want, E.J., Lindon, J.C. & Ebbels, T.M. A statistically rigorous test for the identification of parent-fragment pairs in LC-MS datasets. Anal. Chem. 82, 1766–1778 (2010).

    Article  CAS  Google Scholar 

  70. Sumner, L.W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).

    Article  CAS  Google Scholar 

  71. Gika, H.G., Theodoridis, G. & Wilson, I.D. Liquid chromatography and ultra-performance liquid chromatography-mass spectrometry fingerprinting of human urine. Sample stability under different handling and storage conditions for metabonomics studies. J. Chromatogr. A 1189, 314–322 (2008).

    Article  CAS  Google Scholar 

  72. Food and Drug Administration. FDA Guidance for Industry: Bioanalytical Method Validation. FDA, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM), http://www.fda.gov/downloads/Drugs/.../Guidances/ucm070107.pdf (2001).

Download references

Acknowledgements

E.J.W. acknowledges funding support from Waters Corporation.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the design of the manuscript, including the protocol steps and anticipated results. E.J.W. and I.D.W. wrote the manuscript, P.M. designed much of the protocol with E.J.W. G.T., R.S.P., J.S., F.M., N.L. and E.H. made valuable contributions and J.K.N. revised the manuscript.

Corresponding authors

Correspondence to Elizabeth J Want or Jeremy K Nicholson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Want, E., Masson, P., Michopoulos, F. et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc 8, 17–32 (2013). https://doi.org/10.1038/nprot.2012.135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.135

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research