Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior

Abstract

Regulation of cell functions by the physical properties of the extracellular matrix (ECM) has emerged as a crucial contributor to development and disease. Two specific physical properties of the ECM, stiffness and dimensionality, each influence cell signaling and function. As these ECM physical properties are linked to other properties that also regulate cell behavior, e.g., integrin ligand density, parsing the specific contributions of ECM stiffness and dimensionality has proven difficult. Here we detail a simple protocol, which can be completed in 1–2 d, for combining three-dimensional (3D) ECM engagement with controlled underlying ECM stiffness. In these 'sandwich gels', cells are sandwiched between a 3D fibrillar ECM and an ECM-coupled polyacrylamide gel of defined compliance, allowing the study of the specific effects of ECM compliance on cell function in physiologically relevant 3D ECMs. This type of system enables high-resolution time-lapse imaging and is suitable for a wide range of cell types and molecular perturbations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assembly of sandwich gels.
Figure 2: Anticipated results with sandwich gel culture setup.

Similar content being viewed by others

References

  1. Ghosh, K., Thodeti, C.K., Dudley, A.C., Mammoto, A. & Klagsbrun, M. et al. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc. Natl. Acad. Sci. USA 105, 11305–11310 (2008).

    Article  CAS  Google Scholar 

  2. Ingber, D.E. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91, 877–887 (2002).

    Article  CAS  Google Scholar 

  3. Mammoto, A., Connor, K.M., Mammoto, T., Yung, C.W. & Huh, D. et al. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457, 1103–1108 (2009).

    Article  CAS  Google Scholar 

  4. Discher, D.E., Janmey, P. & Wang, Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139 (2005).

    Article  CAS  Google Scholar 

  5. Pelham, R.J. Jr. & Wang, Y.L. Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol. Bull. 194, 348–349 (1998).

    Article  CAS  Google Scholar 

  6. Saez, A., Ghibaudo, M., Buguin, A., Silberzan, P. & Ladoux, B. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl. Acad. Sci. USA 104, 8281–8286 (2007).

    Article  CAS  Google Scholar 

  7. Beningo, K.A., Dembo, M. & Wang, Y.L. Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc. Natl. Acad. Sci. USA 101, 18024–18029 (2004).

    Article  CAS  Google Scholar 

  8. Even-Ram, S., Doyle, A.D., Conti, M.A., Matsumoto, K. & Adelstein, R.S. et al. Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat. Cell Biol. 9, 299–399 (2007).

    Article  CAS  Google Scholar 

  9. Engler, A.J., Sen, S., Sweeney, H.L. & Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  10. Tilghman, R.W., Cowan, C.R., Mih, J.D., Koryakina, Y. & Gioeli, D. et al. Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS One 5, e12905 (2010).

    Article  Google Scholar 

  11. Wang, N., Naruse, K., Stamenovic, D., Fredberg, J.J. & Mijailovich, S.M. et al. Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl. Acad. Sci. USA 98, 7765–7770 (2001).

    Article  CAS  Google Scholar 

  12. Lo, C.M., Wang, H.B., Dembo, M. & Wang, Y.L. et al. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    Article  CAS  Google Scholar 

  13. Kong, H.J., Liu, J., Riddle, K., Matsumoto, T. & Leach, K. et al. Non-viral gene delivery regulated by stiffness of cell adhesion substrates. Nat. Mater. 4, 460–464 (2005).

    Article  CAS  Google Scholar 

  14. Mammoto, A., Mammoto, T. & Ingber, D.E. Mechanosensitive mechanisms in transcriptional regulation. J. Cell Sci. 125, 3061–3073 (2012).

    Article  CAS  Google Scholar 

  15. le Duc, Q., Shi, Q., Blonk, I., Sonnenberg, A. & Wang, N. et al. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J. Cell Biol. 189, 1107–1115 (2010).

    Article  CAS  Google Scholar 

  16. Baker, E.L., Lu, J., Yu, D., Bonnecaze, R.T. & Zaman, M.H. et al. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys. J. 99, 2048–2057 (2010).

    Article  CAS  Google Scholar 

  17. Baker, R., Rogers, K.D., Shepherd, N. & Stone, N. New relationships between breast microcalcifications and cancer. Br. J. Cancer 103, 1034–1039 (2010).

    Article  CAS  Google Scholar 

  18. Egeblad, M., Rasch, M.G. & Weaver, V.M. Dynamic interplay between the collagen scaffold and tumor evolution. Curr. Opin. Cell Biol. 22, 697–706 (2010).

    Article  CAS  Google Scholar 

  19. Wang, Y.L. & Pelham, R.J. Jr. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298, 489–496 (1998).

    Article  CAS  Google Scholar 

  20. Frey, M.T., Engler, A., Discher, D.E., Lee, J. & Wang, Y.L. Microscopic methods for measuring the elasticity of gel substrates for cell culture: microspheres, microindenters, and atomic force microscopy. Methods Cell Biol. 83, 47–65 (2007).

    Article  CAS  Google Scholar 

  21. Weigelt, B., Lo, A.T., Park, C.C., Gray, J.W. & Bissell, M.J. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res. Treat. 122, 35–43 (2009).

    Article  Google Scholar 

  22. Dunn, J.C., Tompkins, R.G. & Yarmush, M.L. Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. J. Cell Biol. 116, 1043–1053 (1992).

    Article  CAS  Google Scholar 

  23. Dunn, J.C., Yarmush, M.L., Koebe, H.G. & Tompkins, R.G. Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J. 3, 174–177 (1989).

    Article  CAS  Google Scholar 

  24. Erler, J.T. & Weaver, V.M. Three-dimensional context regulation of metastasis. Clin. Exp. Metastasis 26, 35–49 (2009).

    Article  Google Scholar 

  25. Pankov, R., Endo, Y., Even-Ram, S., Araki, M. & Clark, K. et al. A Rac switch regulates random versus directionally persistent cell migration. J. Cell Biol. 170, 793–802 (2005).

    Article  CAS  Google Scholar 

  26. Petrie, R.J., Doyle, A.D. & Yamada, K.M. Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell Biol. 10, 538–549 (2009).

    Article  CAS  Google Scholar 

  27. Beningo, K.A. & Wang, Y.L. Double-hydrogel substrate as a model system for three-dimensional cell culture. Methods Mol. Biol. 370, 203–212 (2007).

    Article  CAS  Google Scholar 

  28. Rehfeldt, F., Brown, A.E., Raab, M., Cai, S. & Zajac, A.L. et al. Hyaluronic acid matrices show matrix stiffness in 2D and 3D dictates cytoskeletal order and myosin-II phosphorylation within stem cells. Integr. Biol. (Camb.) 4, 422–430 (2012).

    Article  CAS  Google Scholar 

  29. Ezzell, R.M., Toner, M., Hendricks, K., Dunn, J.C. & Tompkins, R.G. et al. Effect of collagen gel configuration on the cytoskeleton in cultured rat hepatocytes. Exp. Cell Res. 208, 442–452 (1993).

    Article  CAS  Google Scholar 

  30. Myers, K.A., Applegate, K.T., Danuser, G., Fischer, R.S. & Waterman, C.M. et al. Distinct ECM mechanosensing pathways regulate microtubule dynamics to control endothelial cell branching morphogenesis. J. Cell Biol. 192, 321–334 (2011).

    Article  CAS  Google Scholar 

  31. Harunaga, J.S. & Yamada, K.M. Cell-matrix adhesions in 3D. Matrix Biol. 30, 363–369 (2011).

    Article  CAS  Google Scholar 

  32. Shakesheff, K.M. & Rose, F.R. Tissue engineering in the development of replacement technologies. Adv. Exp. Med. Biol. 745, 47 (2012).

    Article  CAS  Google Scholar 

  33. Huh, D., Hamilton, G.A. & Ingber, D.E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21, 745–754 (2011).

    Article  CAS  Google Scholar 

  34. Hutmacher, D.W., Horch, R.E., Loessner, D., Rizzi, S. & Sieh, S. et al. Translating tissue engineering technology platforms into cancer research. J. Cell Mol. Med. 13, 1417–1427 (2009).

    Article  CAS  Google Scholar 

  35. Maltman, D.J. & Przyborski, S.A. Developments in three-dimensional cell culture technology aimed at improving the accuracy of in vitro analyses. Biochem. Soc. Trans. 38, 1072–1075 (2010).

    Article  CAS  Google Scholar 

  36. Pathak, A. & Kumar, S. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl. Acad. Sci. USA 109, 10334–10339 (2012).

    Article  CAS  Google Scholar 

  37. Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M. & Hsin, H.Y. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2011).

    Article  Google Scholar 

  38. Raeber, G.P., Lutolf, M.P. & Hubbell, J.A. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys. J. 89, 1374–1388 (2005).

    Article  CAS  Google Scholar 

  39. Mikos, A.G., Bao, Y., Cima, L.G., Ingber, D.E. & Vacanti, J.P. et al. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J. Biomed. Mater. Res. 27, 183–189 (1993).

    Article  CAS  Google Scholar 

  40. Mikos, A.G., Sarakinos, G., Lyman, M.D., Ingber, D.E. & Vacanti, J.P. et al. Prevascularization of porous biodegradable polymers. Biotechnol. Bioeng. 42, 716–723 (1993).

    Article  CAS  Google Scholar 

  41. Miller, J.S., Stevens, K.R., Yang, M.T., Baker, B.M. & Nguyen, D.H. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 9, 768–774 (2012).

    Article  Google Scholar 

  42. Cukierman, E. & Bassi, D.E. Physico-mechanical aspects of extracellular matrix influences on tumorigenic behaviors. Semin. Cancer Biol. 20, 139–145 (2010).

    Article  CAS  Google Scholar 

  43. Grinnell, F. & Petroll, W.M. Cell motility and mechanics in three-dimensional collagen matrices. Annu. Rev. Cell Dev. Biol. 26, 335–361 (2009).

    Article  Google Scholar 

  44. Hakkinen, K.M., Harunaga, J.S., Doyle, A.D. & Yamada, K.M. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng. Part A 17, 713–724 (2010).

    Article  Google Scholar 

  45. Miron-Mendoza, M., Seemann, J. & Grinnell, F. The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices. Biomaterials 31, 6425–6435 (2010).

    Article  CAS  Google Scholar 

  46. Levental, K.R., Yu, H., Kass, L., Lakins, J.N. & Egeblad, M. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  Google Scholar 

  47. Fischer, R.S., Gardel, M., Ma, X., Adelstein, R.S. & Waterman, C.M. Local cortical tension by myosin II guides 3D endothelial cell branching. Curr. Biol. 19, 260–265 (2009).

    Article  CAS  Google Scholar 

  48. Carmeliet, P., De Smet, F., Loges, S. & Mazzone, M. Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat. Rev. Clin. Oncol. 6, 315–326 (2009).

    Article  CAS  Google Scholar 

  49. Mammoto, A., Mammoto, T. & Ingber, D.E. Rho signaling and mechanical control of vascular development. Curr. Opin. Hematol. 15, 228–234 (2008).

    Article  CAS  Google Scholar 

  50. Buxboim, A. & Discher, D.E. Stem cells feel the difference. Nat. Methods 7, 695–697 (2010).

    Article  CAS  Google Scholar 

  51. Trappmann, B., Gautrot, J.E., Connelly, J.T., Strange, D.G. & Li, Y. et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11, 642–649 (2012).

    Article  CAS  Google Scholar 

  52. Myers, J.P. & Gomez, T.M. Focal adhesion kinase promotes integrin adhesion dynamics necessary for chemotropic turning of nerve growth cones. J. Neurosci. 31, 13585–13595 (2011).

    Article  CAS  Google Scholar 

  53. Myers, J.P., Santiago-Medina, M. & Gomez, T.M. Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions. Dev. Neurobiol. 71, 901–923 (2011).

    Article  CAS  Google Scholar 

  54. Renaudin, A., Lehmann, M., Girault, J. & McKerracher, L. Organization of point contacts in neuronal growth cones. J. Neurosci. Res. 55, 458–471 (1999).

    Article  CAS  Google Scholar 

  55. Robles, E. & Gomez, T.M. Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding. Nat. Neurosci. 9, 1274–1283 (2006).

    Article  CAS  Google Scholar 

  56. Santiago-Medina, M., Myers, J.P. & Gomez, T.M. Imaging adhesion and signaling dynamics in Xenopus laevis growth cones. Dev. Neurobiol. 72, 585–599 (2012).

    Article  CAS  Google Scholar 

  57. Jiang, F.X., Yurke, B., Schloss, R.S., Firestein, B.L. & Langrana, N.A. Effect of dynamic stiffness of the substrates on neurite outgrowth by using a DNA-crosslinked hydrogel. Tissue Eng. Part A 16, 1873–1889 (2010).

    Article  CAS  Google Scholar 

  58. Leach, J.B., Brown, X.Q., Jacot, J.G., Dimilla, P.A. & Wong, J.Y. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. 4, 26–34 (2007).

  59. Kubow, K.E. & Horwitz, A.R. Reducing background fluorescence reveals adhesions in 3D matrices. Nat. Cell Biol. 13, 3–5 (2011).

    Article  CAS  Google Scholar 

  60. Geiger, B., Spatz, J.P. & Bershadsky, A.D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  Google Scholar 

  61. Doyle, A.D., Wang, F.W., Matsumoto, K. & Yamada, K.M. One-dimensional topography underlies three-dimensional fibrillar cell migration. 184, 481–490 (2009).

  62. Fraley, S.I., Feng, Y., Krishnamurthy, R., Kim, D.H. & Celedon, A. et al. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat. Cell Biol. 12, 598–604 (2010).

    Article  CAS  Google Scholar 

  63. Hakkinen, K.M., Harunaga, J.S., Doyle, A.D. & Yamada, K.M. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng. Part A 17, 713–724 (2011).

    Article  CAS  Google Scholar 

  64. Wang, N., Tytell, J.D. & Ingber, D.E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009).

    Article  CAS  Google Scholar 

  65. Wadsworth, P. Using cultured mammalian cells to study mitosis. Cold Spring Harb. Protoc. 2012, 205–212 (2012).

    Article  Google Scholar 

  66. Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60, 24–34 (2005).

    Article  Google Scholar 

  67. Buxboim, A., Rajagopal, K., Brown, A.E. & Discher, D.E. How deeply cells feel: methods for thin gels. J. Phys. Condens. Matter 22, 194116 (2010).

    Article  Google Scholar 

  68. Guo, W.H. & Wang, Y.L. in Live Cell Imaging: A Laboratory Manual (eds. Goldman, R.D., Swedlow, J.R., Spector, D.L.) 43 (Cold Spring Harbor, 2010).

  69. Rieder, C.L. & Hard, R. Newt lung epithelial cells: cultivation, use, and advantages for biomedical research. Int. Rev. Cytol. 122, 153–220 (1990).

    Article  CAS  Google Scholar 

  70. Lutz, D.A., Hamaguchi, Y. & Inoue, S. Micromanipulation studies of the asymmetric positioning of the maturation spindle in Chaetopterus sp. oocytes: I. Anchorage of the spindle to the cortex and migration of a displaced spindle. Cell Motil. Cytoskeleton 11, 83–96 (1988).

    Article  CAS  Google Scholar 

  71. Phillips, J.B., Bunting, S.C., Hall, S.M. & Brown, R.A. Neural tissue engineering: a self-organizing collagen guidance conduit. Tissue Eng. 11, 1611–1617 (2005).

    Article  CAS  Google Scholar 

  72. Olsen, B.R. Life without perlecan has its problems. J. Cell Biol. 147, 909–912 (1999).

    Article  CAS  Google Scholar 

  73. Avery, N.C., Sims, T.J. & Bailey, A.J. Quantitative determination of collagen cross-links. Methods Mol. Biol. 522, 103–121 (2009).

    Article  CAS  Google Scholar 

  74. Slatter, D.A., Avery, N.C. & Bailey, A.J. Collagen in its fibrillar state is protected from glycation. Int. J. Biochem. Cell Biol. 40, 2253–2263 (2008).

    Article  CAS  Google Scholar 

  75. Waterman-Storer, C.M. Microtubule/organelle motility assays. Curr. Protoc. Cell Biol. 13, 13.1.1–13.1.21 (2001).

    Google Scholar 

  76. Omidian, H., Rocca, J.G. & Park, K. Advances in superporous hydrogels. J. Control Release 102, 3–12 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.S.F., K.A.M. and C.M.W. are supported by the NHLBI Intramural Research Program. M.L.G. is supported by the NIH Director's Pioneer Award (DP10D00354). We thank Sergey Plotnikov for insightful discussion. We also acknowledge members of the NIH Electron Microscopy Core Facility and are grateful for the particularly excellent technical skills of M. Daniels and P. Connelly.

Author information

Authors and Affiliations

Authors

Contributions

R.S.F. and K.A.M. conducted experimental work, M.L.G. performed rheometry measurements, and R.S.F., K.A.M. and C.M.W. wrote the manuscript.

Corresponding authors

Correspondence to Robert S Fischer or Clare M Waterman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Edge ruffles of 1.4 kPa polyacrylamide gel attached to 22 mm2 glass coverslip. Note that despite ruffling along edges, tears and rips in gel are not observed, and the gel remains evenly attached to coverslip. Bar equals 2 mm. (PDF 340 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, R., Myers, K., Gardel, M. et al. Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior. Nat Protoc 7, 2056–2066 (2012). https://doi.org/10.1038/nprot.2012.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.127

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing