Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Radiometric and spectrophotometric in vitro assays of glycosyltransferases involved in plant cell wall carbohydrate biosynthesis

Abstract

Most of the glycosyltransferases (GTs) that catalyze the formation of plant cell wall carbohydrates remain to be biochemically characterized. This can be achieved only if specific assays are available for these enzymes. Here we present a protocol for in vitro assays of processive and nonprocessive membrane-bound GTs. The assays are either based on the use of radioactive nucleotide sugars (NDP sugars; e.g., UDP-[U-14C]glucose) and the quantification of the radiolabeled monosaccharides incorporated into soluble or insoluble carbohydrates, or on the coupling of the GT reaction with that of pyruvate kinase (PK) and the oxidation of NADH by lactate dehydrogenase (LDH). The radiometric assays are more suitable for exploratory work on poorly characterized enzymes, whereas the spectrophotometric assays require the availability of highly enriched GTs. Both assays can be performed within 1 d, depending on the number of fractions to be assayed or reaction mixtures to be tested.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radiometric assays.
Figure 2: Schematic representation of the protocol used for spectrophotometric assays.
Figure 3: Typical data obtained with a detergent-extracted plant GT using the radiometric assay.

Similar content being viewed by others

References

  1. Keegstra, K. Plant cell walls. Plant Physiol. 154, 483–486 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Doblin, M.S., Pettolino, F. & Bacic, A. Plant cell walls: the skeleton of the plant world. Funct. Plant Biol. 37, 357–381 (2010).

    CAS  Google Scholar 

  3. Boerjan, W., Ralph, J. & Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546 (2003).

    PubMed  CAS  Google Scholar 

  4. Cosgrove, D.J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861 (2005).

    PubMed  CAS  Google Scholar 

  5. Hamant, O. & Traas, J. The mechanics behind plant development. New Phytol. 185, 369–385 (2010).

    PubMed  Google Scholar 

  6. Schopfer, P. Biomechanics of plant growth. Am. J. Bot. 93, 1415–1425 (2006).

    PubMed  Google Scholar 

  7. BeMiller, J.N. Plant cell walls: economic significance. In Encyclopedia of Life Sciences (John Wiley & Sons, 2001) (doi:10.1038/npg.els.0001684).

  8. Engelhardt, J. Sources, industrial derivatives and commercial application of cellulose. Carbohydr. Eur. 12, 5–14 (1995).

    Google Scholar 

  9. Teeri, T.T., Brumer, H., Daniel, G. & Gatenholm, P. Biomimetic engineering of cellulose-based materials. Trends Biotechnol. 25, 299–306 (2007).

    PubMed  CAS  Google Scholar 

  10. Ragauskas, A.J. et al. The path forward for biofuels and biomaterials. Science 311, 484–489 (2006).

    PubMed  CAS  Google Scholar 

  11. Pauly, M. & Keegstra, K. Plant cell wall polymers as precursors for biofuels. Curr. Opin. Plant Biol. 13, 305–312 (2010).

    PubMed  CAS  Google Scholar 

  12. Seifert, G.J. Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr. Opin. Plant Biol. 7, 277–284 (2004).

    PubMed  CAS  Google Scholar 

  13. Farrokhi, N. et al. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnol. J. 4, 145–167 (2006).

    PubMed  CAS  Google Scholar 

  14. Guerriero, G., Fugelstad, J. & Bulone, V. What do we really know about cellulose biosynthesis in higher plants? J. Integr. Plant Biol. 52, 161–175 (2010).

    PubMed  CAS  Google Scholar 

  15. Dhugga, K.S. et al. Guar seed β-mannan synthase is a member of the cellulose synthase super gene family. Science 303, 363–366 (2004).

    PubMed  CAS  Google Scholar 

  16. Burton, R.A. et al. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-D-glucans. Science 311, 1940–1942 (2006).

    PubMed  CAS  Google Scholar 

  17. Cocuron, J.C. et al. A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase. Proc. Natl. Acad. Sci. USA 104, 8550–8555 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Liepman, A.H., Wilkerson, C.G. & Keegstra, K. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc. Natl. Acad. Sci. USA 102, 2221–2226 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Kudlicka, K. & Brown, R.M. Jr. Cellulose and callose biosynthesis in higher plants. I. Solubilization and separation of (1-3)- and (1-4)-β-glucan synthase activities from mung bean. Plant Physiol. 115, 643–656 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Bulone, V., Fincher, G. & Stone, B.A. In vitro synthesis of a microfibrillar (1-3)-β-glucan by a ryegrass (Lolium multiflorum) endosperm (1-3)-β-glucan synthase enriched by product entrapment. Plant J. 8, 213–225 (1995).

    CAS  Google Scholar 

  21. Turner, A., Bacic, A., Harris, P.J. & Read, S.M. Membrane fractionation and enrichment of callose synthase from pollen tubes of Nicotiana alata Link et Otto. Planta 205, 380–388 (1998).

    PubMed  CAS  Google Scholar 

  22. Lai Kee Him, J., Pelosi, L., Chanzy, H., Putaux, J.-L. & Bulone, V. Biosynthesis of (1-3)-β-D-glucan (callose) by detergent extracts of a microsomal fraction from Arabidopsis thaliana. Eur. J. Biochem. 268, 4628–4638 (2001).

    Google Scholar 

  23. Lai Kee Him, J. et al. In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. J. Biol. Chem. 277, 36931–36939 (2002).

    PubMed  CAS  Google Scholar 

  24. Colombani, A. et al. In vitro synthesis of (1-3)-β-D-glucan (callose) and cellulose by detergent extracts of membranes from cell suspension cultures of hybrid aspen. Cellulose 11, 313–327 (2004).

    CAS  Google Scholar 

  25. Schlegel, S. et al. Revolutionizing membrane protein overexpression in bacteria. Microb. Biotechnol. 3, 403–411 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Drew, D. et al. GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat. Protoc. 3, 784–798 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Martínez-Rucobo, F.W., Eckhardt-Strelau, L. & Terwisscha van Scheltinga, A.C. Yeast chitin synthase 2 activity is modulated by proteolysis and phosphorylation. Biochem. J. 417, 547–554 (2009).

    PubMed  Google Scholar 

  28. Guerriero, G. et al. Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs. PLoS Pathog. 6, e1001070 (2010).

    PubMed  PubMed Central  Google Scholar 

  29. Bulone, V., Lam, B.T. & Stone, B.A. The effect of amino acid modifying reagents on the activity of a (1-3)-β-glucan synthase from Italian ryegrass (Lolium multiflorum) endosperm. Phytochemistry 50, 9–15 (1999).

    CAS  Google Scholar 

  30. Zabotina, O., Malm, E., Drakakaki, G., Bulone, V. & Raikhel, N. Identification and preliminary characterization of a new chemical affecting glucosyltransferase activities involved in plant cell wall biosynthesis. Mol. Plant 1, 977–989 (2008).

    PubMed  CAS  Google Scholar 

  31. Bulone, V. Analysis of (1-3)-β-D-glucans and cellulose synthesized in vitro: a key step towards the characterization of glucan synthases. In Cellulose: Molecular and Structural Biology (eds. Brown, R.M. Jr. & Saxena I.M.) 123–145 (Springer, 2007).

  32. Egelund, J. et al. Arabidopsis thaliana RGXT1 and RGXT2 encode Golgi-localized (1,3)-α-D-xylosyltransferases involved in the synthesis of pectic rhamnogalacturonan-II. Plant Cell 18, 2593–2607 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Doong, R.L. & Mohnen, D. Solubilization and characterization of a galacturonosyltranferase that synthesizes the pectic polysaccharide homogalacturonan. Plant J. 13, 363–374 (1998).

    CAS  Google Scholar 

  34. Ishii, T., Ichita, J., Matsue, H., Ono, H. & Maeda, I. Fluorescent labeling of pectic oligosaccharides with 2-aminobenzamide and enzyme assay for pectin. Carbohydr. Res. 337, 1023–1032 (2002).

    PubMed  CAS  Google Scholar 

  35. Ishii, T., Ohnishi-Kameyama, M. & Ono, H. Identification of elongating β-1,4-galactosyltransferase activity in mung bean (Vigna radiata) hypocotyls using 2-aminobenzaminated 1,4-linked β-D-galactooligosaccharides as acceptor substrates. Planta 219, 310–318 (2004).

    PubMed  CAS  Google Scholar 

  36. Konishi, T., Ono, H., Ohnishi-Kameyama, M., Kaneko, S. & Ishii, T. Identification of a mung bean arabinofuranosyltransferase that transfers arabinofuranosyl residues onto (1,5)-linked α-L-arabino-oligosaccharides. Plant Physiol. 141, 1098–1105 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Lee, C., Zhong, R. & Ye, Z.-H. Arabidopsis family GT43 members are xylan xylosyltransferases required for the elongation of the xylan backbone. Plant Cell Physiol. 53, 135–143 (2012).

    PubMed  Google Scholar 

  38. Shedletzky, E., Unger, C. & Delmer, D.P. A microtiter-based fluorescence assay for (1,3)-β-glucan synthases. Anal. Biochem. 249, 88–93 (1997).

    PubMed  CAS  Google Scholar 

  39. Gosselin, S., Alhussaini, M., Streiff, M.B., Takabayashi, K. & Palcic, M.M. A continuous spectrophotometric assay for glycosyltransferases. Anal. Biochem. 220, 92–97 (1994).

    PubMed  CAS  Google Scholar 

  40. Bessueille, L. et al. Plasma membrane microdomains from hybrid aspen cells are involved in cell wall polysaccharide biosynthesis. Biochem. J. 420, 93–103 (2009).

    PubMed  CAS  Google Scholar 

  41. Li, J. et al. Biochemical evidence linking a putative callose synthase gene with (1→3)-β-D-glucan biosynthesis in barley. Plant Mol. Biol. 53, 213–225 (2003).

    PubMed  CAS  Google Scholar 

  42. Cifuentes, C., Bulone, V. & Emons, A.M.C. Biosynthesis of callose and cellulose by detergent extracts of tobacco cell membranes and quantification of the polymers synthesized in vitro. J. Integr. Plant Biol. 52, 221–233 (2010).

    PubMed  CAS  Google Scholar 

  43. Pesquet, E., Korolev, A.V., Calder, G. & Lloyd, C.W. The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr. Biol. 20, 744–749 (2010).

    PubMed  CAS  Google Scholar 

  44. Okuda, K., Li, L., Kudlicka, K., Kuga, S. & Brown, M.R. Jr. β-Glucan synthesis in the cotton fiber. I. Identification of β-1,4- and β-1,3-glucans synthesized in vitro. Plant Physiol. 101, 1131–1142 (1993).

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Li, H., Bacic, A. & Read, S.M. Activation of pollen tube callose synthase by detergents. Evidence for different mechanisms of action. Plant Physiol. 114, 1255–1265 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Wu, A., Harriman, R.W., Frost, D.J., Read, S.M. & Wasserman, B.P. Rapid enrichment of CHAPS-solubilized UDP-glucose:(1,3)-β-glucan (callose) synthase from Beta vulgaris L. by product entrapment. Entrapment mechanisms and polypeptide characterization. Plant Physiol. 97, 684–692 (1991).

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Zeng, W., Chatterjee, M. & Faik, A. UDP-xylose stimulated glucuronyltransferase activity in wheat (Triticum aestivum L.) microsomal membranes: characterization and role in glucurono-(arabino)xylan biosynthesis. Plant Physiol. 147, 78–91 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Hanna, R. et al. Solubilization and properties of GDP-fucose:xyloglucan 1,2-α-L-fucosyltransferase from pea epicotyl membranes. Arch. Biochem. Biophys. 290, 7–13 (1991).

    PubMed  CAS  Google Scholar 

  49. Vatén, A. et al. Callose biosynthesis regulates symplastic trafficking during root development. Dev. Cell 21, 1144–1155 (2011).

    PubMed  Google Scholar 

  50. Larsson, C., Sommarin, M. & Widell, S. Isolation of highly purified plant plasma membranes and separation of inside-out and right-side-out vesicle. In Aqueous Two-phase Systems (eds. Walter, H. & Johansson, G.) 451–459 (Academic Press, 1994).

  51. Buckeridge, M.S., Vergara, C.E. & Carpita, N.C. The mechanism of synthesis of a mixed-linkage (1→3),(1→4)β-D-glucan in maize. Evidence for multiple sites of glucosyl transfer in the synthase complex. Plant Physiol. 120, 1105–1116 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Zeng, W. et al. A glucurono-(arabino)xylan synthase complex from wheat (Triticum aestivum L.) contains members of the GT43, 47, and 75 and functions cooperatively. Plant Physiol. 154, 78–97 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Fairweather, J.K., Lai Kee Him, J., Heux, L., Driguez, H. & Bulone, V. Structural characterization by 13C-NMR spectroscopy of products synthesized in vitro by polysaccharide synthases using 13C-enriched glycosyl donors. Application to a UDP-glucose:(1-3)-β-D-glucan synthase from blackberry (Rubus fruticosus). Glycobiology 14, 775–781 (2004).

    PubMed  CAS  Google Scholar 

  54. Petersen, B.L. et al. Assay and heterologous expression in Pichia pastoris of plant cell wall type-II membrane anchored glycosyltransferases. Glycoconj. J. 26, 1235–1246 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    PubMed  CAS  Google Scholar 

  56. Kudlicka, K., Lee, J.H. & Brown, R.M. Jr. A comparative analysis of in vitro cellulose synthesis from cell-free extracts of mung bean (Vigna radiata, Fabaceae) and cotton (Gossypium hirsutum, Malvaceae). Am. J. Bot. 83, 274–284 (1996).

    CAS  Google Scholar 

  57. Faik, A., Price, N.J., Raikhel, N.V. & Keegstra, K. An Arabidopsis gene encoding an α-xylosyltransferase involved in xyloglucan biosynthesis. Proc. Natl. Acad. Sci. USA 99, 7797–7802 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Urahara, T. et al. A β-(1→4)-xylosyltransferase involved in the synthesis of arabinoxylans in developing barley endosperms. Physiol. Plant. 122, 169–180 (2004).

    CAS  Google Scholar 

  59. Gordon, R. & Maclachlan, G. Incorporation of UDP-[14C]glucose into xyloglucan by pea membranes. Plant Physiol. 91, 373–378 (1989).

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Geshi, N., Jørgensen, B., Scheller, H.V. & Ulvskov, P. In vitro biosynthesis of 1,4-β-galactan attached to rhamnogalacturonan I. Planta 210, 622–629 (2000).

    PubMed  CAS  Google Scholar 

  61. Edwards, M., Bulpin, P.V., Dea, I.C.M. & Reid, J.S.G. Biosynthesis of legume-seed galactomannans in vitro. Planta 178, 41–51 (1989).

    PubMed  CAS  Google Scholar 

  62. Yin, L. et al. The cooperative activities of CSLD2, CSLD3, and CSLD5 are required for normal Arabidopsis development. Mol. Plant 4, 1024–1037 (2011).

    PubMed  CAS  Google Scholar 

  63. Cavalier, D.M. & Keegstra, K. Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose. J. Biol. Chem. 281, 34197–34207 (2006).

    PubMed  CAS  Google Scholar 

  64. Peng, L., Kawagoe, Y., Hogan, P. & Delmer, P. Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science 295, 147–150 (2002).

    PubMed  CAS  Google Scholar 

  65. Wayllace, N.Z. et al. An enzyme-coupled continuous spectrophotometric assay for glycogen synthases. Mol. Biol. Rep. 39, 585–591 (2012).

    PubMed  CAS  Google Scholar 

  66. Atmodjo, M.A. et al. Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex. Proc. Natl. Acad. Sci. USA 108, 20225–20230 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Ohlsson, A.B. et al. Cell suspension cultures of Populus tremula × tremuloides exhibit a high level of cellulose synthase gene expression that coincides with increased in vitro cellulose synthase activity. Protoplasma 228, 221–229 (2006).

    PubMed  CAS  Google Scholar 

  68. Rodgers, M.W. & Bolwell, G.P. Partial purification of Golgi-bound arabinosyltransferase and two isoforms of xylosyltransferase from French bean (Phaseolus vulgaris L.). Biochem. J. 288, 817–822 (1992).

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Dhugga, K.S. & Ray, P.M. Purification of 1,3-β-D-glucan synthase activity from pea tissue. Two polypeptides of 55 kDa and 70 kDa copurify with enzyme activity. Eur. J. Biochem. 220, 943–953 (1994).

    PubMed  CAS  Google Scholar 

  70. Edwards, M.E. et al. Molecular characterization of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis. Plant J. 19, 691–697 (1999).

    PubMed  CAS  Google Scholar 

  71. Piro, G., Zuppa, A., Dalessandro, G. & Northcote, D.H. Glucomannan synthesis in pea epicotyls: the mannose and glucose transferases. Planta 190, 206–220 (1993).

    PubMed  CAS  Google Scholar 

  72. Henry, R.J. & Stone, B.A. Solubilization of β-glucan synthases from the membranes of cultured ryegrass endosperm cells. Biochem. J. 203, 629–636 (1982).

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Meikle, P.J., Ng, K.F., Johnson, E., Hoogenraad, N.J. & Stone, B.A. The β-glucan synthase from Lolium multiflorum: detergent solubilization, purification using monoclonal antibodies, and photoaffinity labeling with a novel photoreactive pyrimidine analogue of uridine 5′-diphosphoglucose. J. Biol. Chem. 266, 22569–22581 (1991).

    PubMed  CAS  Google Scholar 

  74. Ma, X. & Stöckigt, J. High yielding one-pot enzyme-catalyzed synthesis of UDP-glucose in gram scales. Carbohydr. Res. 333, 159–163 (2001).

    PubMed  CAS  Google Scholar 

  75. Ramm, M., Wolfender, J.L., Queiroz, E.F., Hostettmann, K. & Hamburger, M. Rapid analysis of nucleotide-activated sugars by high-performance liquid chromatography coupled with diode-array detection, electrospray ionization mass spectrometry and nuclear magnetic resonance. J. Chromatogr. A 1034, 139–148 (2004).

    PubMed  CAS  Google Scholar 

  76. Nicol, F. et al. A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17, 5563–5576 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.B. wrote the manuscript, and C.B. and F.L. performed complementary optimization experiments. C.B. contributed to the writing of the experimental section and the preparation of the figures. All authors checked the accuracy of the experimental details.

Corresponding author

Correspondence to Vincent Bulone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, C., Leijon, F. & Bulone, V. Radiometric and spectrophotometric in vitro assays of glycosyltransferases involved in plant cell wall carbohydrate biosynthesis. Nat Protoc 7, 1634–1650 (2012). https://doi.org/10.1038/nprot.2012.089

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.089

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing