Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Linear amplification for deep sequencing

Abstract

Linear amplification for deep sequencing (LADS) is an amplification method that produces representative libraries for Illumina next-generation sequencing within 2 d. The method relies on attaching two different sequencing adapters to blunt-end repaired and A-tailed DNA fragments, wherein one of the adapters is extended with the sequence for the T7 RNA polymerase promoter. Ligated and size-selected DNA fragments are transcribed in vitro with high RNA yields. Subsequent cDNA synthesis is initiated from a primer complementary to the first adapter, ensuring that the library will only contain full-length fragments with two distinct adapters. Contrary to the severely biased representation of AT- or GC-rich fragments in standard PCR-amplified libraries, the sequence coverage in T7-amplified libraries is indistinguishable from that of nonamplified libraries. Moreover, in contrast to amplification-free methods, LADS can generate sequencing libraries from a few nanograms of DNA, which is essential for all applications in which the starting material is limited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of different library preparation methods for Illumina sequencing.
Figure 2: Workflow of LADS.
Figure 3: Flowchart of experimental procedure.

Similar content being viewed by others

References

  1. Metzker, M.L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Wilhelm, B.T., Marguerat, S., Goodhead, I. & Bahler, J. Defining transcribed regions using RNA-seq. Nat. Protoc. 5, 255–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Bock, C. et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat. Biotechnol. 28, 1106–1114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brinkman, A.B. et al. Whole-genome DNA methylation profiling using MethylCap-seq. Methods 52, 232–236 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Park, P.J. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669–680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akkers, R.C. et al. A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev. Cell 17, 425–434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vermeulen, M. et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142, 967–980 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat. Protoc. 5, 516–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Mamanova, L. et al. FRT-seq: amplification-free, strand-specific transcriptome sequencing. Nat. Methods 7, 130–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Armour, C.D. et al. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nat. Methods 6, 647–649 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Cloonan, N. et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods 5, 613–619 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Core, L.J., Waterfall, J.J. & Lis, J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ingolia, N.T. Genome-wide translational profiling by ribosome footprinting. Methods Enzymol. 470, 119–142 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Kozarewa, I. et al. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes. Nat. Methods 6, 291–295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quail, M.A. et al. A large genome center's improvements to the Illumina sequencing system. Nat. Methods 5, 1005–1010 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meyer, M., Stenzel, U. & Hofreiter, M. Parallel tagged sequencing on the 454 platform. Nat. Protoc. 3, 267–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartfai, R. et al. H2A.Z demarcates intergenic regions of the Plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLoS Pathog. 6, e1001223 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goren, A. et al. Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nat. Methods 7, 47–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Hillier, L.W. et al. Whole-genome sequencing and variant discovery in C. elegans. Nat. Methods 5, 183–188 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Linnarsson, S. Recent advances in DNA sequencing methods—general principles of sample preparation. Exp. Cell Res. 316, 1339–1343 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Gardner, M.J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Glockner, G. et al. Sequence and analysis of chromosome 2 of Dictyostelium discoideum. Nature 418, 79–85 (2002).

    Article  PubMed  Google Scholar 

  24. Perelygina, L. et al. Complete sequence and comparative analysis of the genome of herpes B virus (Cercopithecine herpesvirus 1) from a rhesus monkey. J. Virol. 77, 6167–6177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, C.L., Schreiber, S.L. & Bernstein, B.E. Development and validation of a T7 based linear amplification for genomic DNA. BMC Genomics 4, 19 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Salcedo-Amaya, A.M. et al. Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 106, 9655–9660 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Bakel, H. et al. Improved genome-wide localization by ChIP-chip using double-round T7 RNA polymerase-based amplification. Nucleic Acids Res. 36, e21 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Fire, A. & Xu, S.Q. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA 92, 4641–4645 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, D., Daubendiek, S.L., Zillman, M.A., Ryan, K. & Kool, E.T. Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J. Am. Chem. Soc. 118, 1587–1594 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dean, F.B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA 99, 5261–5266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Atherton, R.A. et al. Whole genome sequencing of enriched chloroplast DNA using the Illumina GAII platform. Plant Methods 6, 22 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jeng, S.T., Gardner, J.F. & Gumport, R.I. Transcription termination by bacteriophage T7 RNA polymerase at rho-independent terminators. J. Biol. Chem. 265, 3823–3830 (1990).

    CAS  PubMed  Google Scholar 

  35. Krieg, P.A. Improved synthesis of full-length RNA probe at reduced incubation temperatures. Nucleic Acids Res. 18, 6463 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O'Neill, L.P. & Turner, B.M. Immunoprecipitation of native chromatin: NChIP. Methods 31, 76–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Dohm, J.C., Lottaz, C., Borodina, T. & Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The development of this method has been financially supported by the Netherlands Organisation for Scientific Research (ZonMw/NGI Horizon 93511023; NWO-Toptalent 021.001.011) and by the European Commission (EVIMalaR; ATLAS EU-FP7_221952). We thank E. Janssen-Megens for technical assistance, advice and operation of the GAII machine and D. van Soolingen and A. Schurch for providing Mycobacterium tuberculosis genomic DNA. Furthermore, we thank A. Salcedo-Amaya and A. Brinkman for useful discussions during the development of LADS and for critical reading of the manuscript, and we are grateful for the advice and help of all our colleagues in the molecular biology department.

Author information

Authors and Affiliations

Authors

Contributions

R.B. developed the concept of LADS. W.A.M.H. and R.B. established and fine-tuned the protocol. K.-J.F. provided bioinformatic support. H.G.S. supervised the project. W.A.M.H., R.B. and H.G.S. prepared and wrote the manuscript.

Corresponding author

Correspondence to Hendrik G Stunnenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1 | Schematic representation of standard and amplification-free library preparation for Illumina sequencing.

(a) In the standard Illumina protocol (www.illumina.com) end-polished and A-tailed DNA fragments are ligated with a "sparrow tail" adapter containing a short complementary region and two different sequencing primers (S1, S2) on the forward and reverse strands. After size-selection, ligated fragments are subject to 12 (or even 18) cycles of PCR amplification to increase copy number. The "extended" PCR primers are also used to incorporate the sequences that facilitate hybridization to the oligonucleotides (P5, P7) attached to the surface of the flowcell; (b) In the amplification-free protocol (ref. 14) the "sparrow tail" adapters already contain the sequence used for capturing on the surface of the flowcell. Therefore, after ligation and size selection, they can be directly used for sequencing. (TIFF 581 kb)

Supplementary Figure 2 | LADS preserves GC-rich regions of the M. tuberculosis genome.

(a-c) Screenshots of the shotgun sequencing data obtained by different library preparation methods from M. tuberculosis. 40 or 400 ng sonicated genomic DNA from SH1:NLA000700874 strain was used to prepare sequencing libraries by standard PCR-based method (40ng starting material with 12 cycles of amplification), amplification-free method (400ng starting material) or LADS (40ng starting material). After sequencing on the Illumina GAII platform, 36bp sequence reads were mapped against the reference genome (H37Rv). Coverage plots were generated from equal number (21 million) of unique and randomly placed non-unique reads by counting the number of tags in every 10bp window of the genome. Ratio-plots display the sequencing data obtained after amplification (PCR or T7) over the amplification-free control in log2 scale (150bp moving window smoothening has been applied). (a) genome-wide view, (b-c) “zoom-in” to regions with extreme GC-content. (TIFF 1912 kb)

Supplementary Figure 3 | Decrosslinking introduces sequence bias in NGS libraries.

Formaldehyde cross-linked, fragmented Plasmodium falciparum chromatin was decrosslinked for 4 hours at 60°C or overnight at 45°C in the presence of 0.2 or 0.5M NaCl. After purification, DNA was used for Illumina library preparation using linear T7 amplification and analyzed by qPCR for amplicons with different AT-content. (TIFF 612 kb)

Supplementary Table 1 | A set of 'barcoded' adapters for LADS. (TIFF 723 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoeijmakers, W., Bártfai, R., Françoijs, KJ. et al. Linear amplification for deep sequencing. Nat Protoc 6, 1026–1036 (2011). https://doi.org/10.1038/nprot.2011.345

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.345

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing