Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0

Abstract

Over the past decade, a growing community of researchers has emerged around the use of constraint-based reconstruction and analysis (COBRA) methods to simulate, analyze and predict a variety of metabolic phenotypes using genome-scale models. The COBRA Toolbox, a MATLAB package for implementing COBRA methods, was presented earlier. Here we present a substantial update of this in silico toolbox. Version 2.0 of the COBRA Toolbox expands the scope of computations by including in silico analysis methods developed since its original release. New functions include (i) network gap filling, (ii) 13C analysis, (iii) metabolic engineering, (iv) omics-guided analysis and (v) visualization. As with the first version, the COBRA Toolbox reads and writes systems biology markup language–formatted models. In version 2.0, we improved performance, usability and the level of documentation. A suite of test scripts can now be used to learn the core functionality of the toolbox and validate results. This toolbox lowers the barrier of entry to use powerful COBRA methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The philosophy of COBRA.
Figure 2: Overview of the COBRA Toolbox.
Figure 3: Flux balance analysis of E. coli core model.
Figure 4: Flux variability analysis of E. coli.
Figure 5: Sampling histogram of glycolysis, using the E. coli core model under aerobic and anaerobic glucose minimal medium conditions.

Similar content being viewed by others

References

  1. Feist, A.M. et al. Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metab. Eng. 12, 173–186 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Feist, A.M. & Palsson, B.O. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat. Biotechnol. 26, 659–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oberhardt, M.A., Palsson, B.O. & Papin, J.A. Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 5, 320 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J. & Palsson, B.O. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Gianchandani, E.P., Joyce, A.R., Palsson, B.O. & Papin, J.A. Functional states of the genome-scale Escherichia coli transcriptional regulatory system. PLoS Comput. Biol. 5, e1000403 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brynildsen, M.P., Wong, W.W. & Liao, J.C. Transcriptional regulation and metabolism. Biochem. Soc. Trans. 33, 1423–1426 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Thiele, I., Fleming, R.M., Bordbar, A., Schellenberger, J. & Palsson, B.O. Functional characterization of alternate optimal solutions of Escherichia coli's transcriptional and translational machinery. Biophys. J. 98, 2072–2081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thiele, I., Jamshidi, N., Fleming, R.M. & Palsson, B.O. Genome-scale reconstruction of Escherichia coli's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput. Biol. 5, e1000312 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Papin, J.A., Hunter, T., Palsson, B.O. & Subramaniam, S. Reconstruction of cellular signalling networks and analysis of their properties. Nat. Rev. Mol. Cell Biol. 6, 99–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Li, F., Thiele, I., Jamshidi, N. & Palsson, B.O. Identification of potential pathway mediation targets in Toll-like receptor signaling. PLoS Comput. Biol. 5, e1000292 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hyduke, D.R. & Palsson, B.Ø. Towards genome-scale signalling-network reconstructions. Nat. Rev. Genet. 11, 297–307 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Raman, K., Vashisht, R. & Chandra, N. Strategies for efficient disruption of metabolism in Mycobacterium tuberculosis from network analysis. Mol. Biosyst. 5, 1740–1751 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Becker, S.A. & Palsson, B.O. Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol. 5, 8 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bordbar, A., Lewis, N.E., Schellenberger, J., Palsson, B.O. & Jamshidi, N. Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol. Syst. Biol. 6, 422 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thiele, I., Price, N.D., Vo, T.D. & Palsson, B.O. Candidate metabolic network states in human mitochondria. Impact of diabetes, ischemia, and diet. J. Biol. Chem. 280, 11683–11695 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Price, N.D., Reed, J.L. & Palsson, B.O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Micro. 2, 886–897 (2004).

    Article  CAS  Google Scholar 

  17. Becker, S.A. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat. Protoc. 2, 727–738 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Notebaart, R.A., Teusink, B., Siezen, R.J. & Papp, B. Co-regulation of metabolic genes is better explained by flux coupling than by network distance. PLoS Comput. Biol. 4, e26 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Durot, M., Bourguignon, P.Y. & Schachter, V. Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol. Rev. 33, 164–190 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Raman, K., Yeturu, K. & Chandra, N. targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst. Biol. 2, 109 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vazquez, A. et al. Impact of the solvent capacity constraint on E. coli metabolism. BMC Syst. Biol. 2, 7 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Henry, C.S., Jankowski, M.D., Broadbelt, L.J. & Hatzimanikatis, V. Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys. J. 90, 1453–1461 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Fleming, R.M., Thiele, I. & Nasheuer, H.P. Quantitative assignment of reaction directionality in constraint-based models of metabolism: application to Escherichia coli. Biophys. Chem. 145, 47–56 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fleming, R.M. & Thiele, I. von Bertalanffy 1.0: a COBRA toolbox extension to thermodynamically constrain metabolic models. Bioinfomatics 27, 142–143 (2010).

    Article  Google Scholar 

  25. Becker, S.A. & Palsson, B.O. Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 4, e1000082 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shlomi, T., Cabili, M.N., Herrgard, M.J., Palsson, B.O. & Ruppin, E. Network-based prediction of human tissue-specific metabolism. Nat. Biotech. 26, 1003–1010 (2008).

    Article  CAS  Google Scholar 

  27. Schellenberger, J. & Palsson, B.O. Use of randomized sampling for analysis of metabolic networks. J. Biol. Chem. 284, 5457–5461 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Orth, J.D., Thiele, I. & Palsson, B.O. What is flux balance analysis? Nat. Biotech. 28, 245–248 (2010).

    Article  CAS  Google Scholar 

  29. Orth, J.D. & Palsson, B.Ø. Systematizing the generation of missing metabolic knowledge. Biotechnol. Bioeng. 107, 403–412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Palsson, B. Metabolic systems biology. FEBS Lett. 583, 3900–3904 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schellenberger, J., Park, J., Conrad, T. & Palsson, B. BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11, 213 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Palsson, B.O. Two-dimensional annotation of genomes. Nat. Biotechnol. 22, 1218–1219 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Reed, J.L., Famili, I., Thiele, I. & Palsson, B.O. Towards multidimensional genome annotation. Nat. Rev. Genet. 7, 130–141 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Feist, A.M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3 (2007).

  35. Hong, S.H. et al. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat. Biotech. 22, 1275–1281 (2004).

    Article  CAS  Google Scholar 

  36. Mo, M., Palsson, B. & Herrgard, M. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 3, 37 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nogales, J., Palsson, B. & Thiele, I. A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst. Biol. 2, 79 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Raghunathan, A., Reed, J., Shin, S., Palsson, B. & Daefler, S. Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction. BMC Syst. Biol. 3, 38 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nookaew, I. et al. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst. Biol. 2, 71 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kuepfer, L., Sauer, U. & Blank, L.M. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 15, 1421–1430 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gonzalez, O. et al. Reconstruction, modeling & analysis of Halobacterium salinarum R-1 metabolism. Mol. Biosyst. 4, 148–159 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Heinemann, M., Kummel, A., Ruinatscha, R. & Panke, S. In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol. Bioeng. 92, 850–864 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Thiele, I. & Palsson, B.O. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protocols 5, 93–121 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Smallbone, K. & Simeonidis, E. Flux balance analysis: a geometric perspective. J. Theor. Biol. 258, 311–315 (2009).

    Article  PubMed  Google Scholar 

  45. Satish Kumar, V., Dasika, M. & Maranas, C. Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8, 212 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Burgard, A.P., Pharkya, P. & Maranas, C.D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Patil, K., Rocha, I., Forster, J. & Nielsen, J. Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6, 308 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lun, D.S. et al. Large-scale identification of genetic design strategies using local search. Mol. Syst. Biol. 5, 296 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schellenberger, J., Lewis, N.E. & Palsson, B.Ø. Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophysical. J. 200, 544–553 (2011).

    Article  Google Scholar 

  50. Price, N.D., Schellenberger, J. & Palsson, B.O. Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies. Biophys. J. 87, 2172–2186 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wiback, S.J., Famili, I., Greenberg, H.J. & Palsson, B.O. Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space. J. Theor. Biol. 228, 437–447 (2004).

    Article  PubMed  Google Scholar 

  52. Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N. & Barabasi, A.L. Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427, 839–843 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Reed, J.L. et al. Systems approach to refining genome annotation. Proc. Natl. Acad. Sci. USA 103, 17480–17484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chandrasekaran, S. & Price, N.D. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 107, 17845–17850 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Henry, C.S. et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Bornstein, B.J., Keating, S.M., Jouraku, A. & Hucka, M. LibSBML: an API Library for SBML. Bioinformatics 24, 880–881 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Keating, S.M., Bornstein, B.J., Finney, A. & Hucka, M. SBMLToolbox: an SBML toolbox for MATLAB users. Bioinformatics 22, 1275–1277 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Feist, A.M. & Palsson, B.O. The biomass objective function. Curr. Opin. Microbiol. 13, 344–349 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Varma, A. & Palsson, B.O. Metabolic capabilities of Escherichia coli: I. Synthesis of biosynthetic precursors and cofactors. J. Theor. Biol. 165, 477–502 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Lewis, N.E. et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6, 390 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Segrè, D., Vitkup, D. & Church, G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112–15117 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mahadevan, R. & Schilling, C.H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metabol. Engin. 5, 264–276 (2003).

    Article  CAS  Google Scholar 

  64. Fischer, E., Zamboni, N. & Sauer, U. High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal. Biochem. 325, 308–316 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Wiechert, W., Möllney, M., Isermann, N., Wurzel, M. & de Graaf, A.A. Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol. Bioeng. 66, 69–85 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Antoniewicz, M.R., Kelleher, J.K. & Stephanopoulos, G. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metabol. Engin. 9, 68–86 (2007).

    Article  CAS  Google Scholar 

  67. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids. Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids. Res. 32, D277–D280 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Waygood, E.B. & Sanwal, B.D. The control of pyruvate kinases of Escherichia coli. I. Physicochemical and regulatory properties of the enzyme activated by fructose 1,6-diphosphate. J. Biol. Chem. 249, 265–274 (1974).

    CAS  PubMed  Google Scholar 

  70. Duarte, N.C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. USA 104, 1777–1782 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kazeros, A. et al. Overexpression of apoptotic cell removal receptor MERTK in alveolar macrophages of cigarette smokers. Am. J. Respir. Cell Mol. Biol. 39, 747–757 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank individuals who have contributed to or tested COBRA 2.0: S. Gudmundsson, T. Conrad, N. Jamshidi, R. Notebaart and J. Feala. Funding was provided in part by the National Institute of Allergy and Infectious Diseases NIH/DHHS through interagency agreement Y1-AI-8401-01, NIH grants GM68837-05A1, DE-PS02-08ER08-01, GM057089-12 and GM057089-11S1, and the CalIT2 Summer scholars program. R.F. and I.T. were funded by U.S. Department of Energy, Offices of Advanced Scientific Computing Research and the Biological and Environmental Research as part of the Scientific Discovery Through Advanced Computing program, grant DE-SC0002009. N.L. was funded through a National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) Program Plant Systems Biology training grant (# DGE-0504645).

Author information

Authors and Affiliations

Authors

Contributions

J.S., R.Q., R.M.T.F., I.T., J.D.O., A.M.F., D.C.Z., A.B., N.E.L., S.R., J.K. and D.R.H. contributed modules to the COBRA Toolbox v2.0. D.R.H., J.S., R.Q., A.B., J.D.O., N.E.L. and B.Ø.P. wrote the manuscript.

Corresponding authors

Correspondence to Daniel R Hyduke or Bernhard Ø Palsson.

Ethics declarations

Competing interests

Bernhard Ø. Palsson serves on the scientific advisory board of Genomatica.

Supplementary information

Supplementary Discussion

Information on COBRA (PDF 608 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schellenberger, J., Que, R., Fleming, R. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6, 1290–1307 (2011). https://doi.org/10.1038/nprot.2011.308

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.308

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research