Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fluorescent conjugated polymer-based FRET technique for detection of DNA methylation of cancer cells

Abstract

This protocol describes a homogeneous, convenient and sensitive DNA methylation detection method, using an optically amplifying cationic conjugated polymer (CCP, poly((1,4-phenylene)-2,7-[9,9-bis(6′-N,N,N-trimethyl ammonium)-hexyl fluorene] dibromide)). Genomic DNA from cancer cells is pretreated with a methylation-sensitive restriction endonuclease, followed by PCR amplification in the presence of fluorescein-labeled dNTP and Taq polymerase. The PCR only occurs for methylated DNA. DNA methylation of the gene sequence of interest is detected as a result of the fluorescence resonance energy transfer (FRET) between CCP and fluorescein that is incorporated into DNA. The methylated statuses of the p16, HPP1 and GALR2 promoters of five cancer cell lines (HT29, HepG2, A498, HL60 and M17) were assayed to provide an association study between the cancers and susceptibility genes, which shows great potential for early cancer diagnosis. This protocol simplifies previously available procedures by avoiding the need for primer labeling, isolation or purification steps, and sophisticated instruments. The assay takes about 20 h to obtain the methylated statuses of cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of CCP-based DNA methylation detection.
Figure 2
Figure 3: Analysis of PCR products for four genes (ActB, p16, HPP1 and GALR2) of five cancer cell lines (HT29, HepG2, A498, HL60 and M17) in 2% (wt/vol) agarose gel.
Figure 4: Fluorescence spectra measured in 1 ml of HEPES buffer (25 mM, pH 8.0) containing 0.2 μM CCP and 0.3% sample for analysis of genes (a) ActB, (b) p16, (c) HPP1 and (d) GALR2 in cell line HL60.
Figure 5: FRET ratios (I530nm/I424nm) for analysis of genes (a) ActB, (b) p16, (c) HPP1 and (d) GALR2 in five cell lines (HT29, HepG2, A498, HL60 and M17).
Figure 6: CCP-based quantitative analysis of DNA methylation.

Similar content being viewed by others

References

  1. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21–32 (2001).

    Article  CAS  Google Scholar 

  2. Robertson, K.D. & Wolffe, A.P. DNA methylation in health and disease. Nat. Rev. Genet. 1, 11–19 (2000).

    Article  CAS  Google Scholar 

  3. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  Google Scholar 

  4. Baylin, S.B. & Herman, J.G. DNA Alterations in Cancer: Genetic and Epigenetic Alterations 293–309 (Eaton Publishing, Natick, Massachusetts, 2000).

  5. Antequera, F. & Bird, A. Number of CpG islands and genes in human and mouse. Proc. Natl. Acad. Sci. USA 90, 11995–11999 (1993).

    Article  CAS  Google Scholar 

  6. Esteller, M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 62, 4519–4524 (2002).

    Google Scholar 

  7. Szyf, M. DNA Methylation and Cancer Therapy (Springer-Verlag, Berlin, 2005).

  8. Feng, F., Wang, H., Han, L. & Wang, S. Fluorescent conjugated polyelectrolyte as an indicator for convenient detection of DNA methylation. J. Am. Chem. Soc. 130, 11338–11343 (2008).

    Article  CAS  Google Scholar 

  9. Kuo, K.C., McCune, R.A., Gehrke, C.W., Midgett, R. & Ehrlich, M. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res. 8, 4763–4776 (1980).

    Article  CAS  Google Scholar 

  10. Herman, J.G., Graff, J.R., Myohanen, S., Nelkin, B.D. & Baylin, S.B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826 (1996).

    Article  CAS  Google Scholar 

  11. Song, G.A. et al. Mucinous carcinomas of the colorectum have distinct molecular genetic characteristics. Int. J. Oncol. 26, 745–750 (2005).

    CAS  PubMed  Google Scholar 

  12. Costello, J.F. et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat. Genet. 24, 132–138 (2000).

    Article  CAS  Google Scholar 

  13. Shiraishi, M. et al. Methyl-CpG binding domain column chromatography as a tool for the analysis of genomic DNA methylation. Anal. Biochem. 329, 1–10 (2004).

    Article  CAS  Google Scholar 

  14. Hatada, I., Hayashizaki, Y., Hirotsune, S., Komatsubara, H. & Mukai, T. A genomic scanning method for higher organisms using restriction sites as landmarks. Proc. Natl. Acad. Sci. USA 88, 9523–9527 (1991).

    Article  CAS  Google Scholar 

  15. Singer-Sam, J., LeBon, J.M., Tanguay, R.L. & Riggs, A.D. A quantitative HpaII-PCR assay to measure methylation of DNA from a small number of cells. Nucleic Acids Res. 18, 687 (1990).

    Article  CAS  Google Scholar 

  16. Gonzalgo, M.L. & Jones, P.A. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 25, 2529–2531 (1997).

    Article  CAS  Google Scholar 

  17. Xiong, Z. & Laird, P.W. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 25, 2532–2534 (1997).

    Article  CAS  Google Scholar 

  18. Hayatsu, H. The bisulfite genomic sequencing used in the analysis of epigenetic states, a technique in the emerging environmental genotoxicology research. Mutat. Res. 659, 77–82 (2008).

    Article  CAS  Google Scholar 

  19. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827–1831 (1992).

    Article  CAS  Google Scholar 

  20. Clark, S.J., Harrison, J., Paul, C.L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997 (1994).

    Article  CAS  Google Scholar 

  21. Dobrovic, A Molecular Diagnostics: For the Clinical Laboratorian 149–160 (Humana Press, Totowa, New Jersey, 2005).

  22. Pfeifer, G.P., Steigerwald, S.D., Mueller, P.R., Wold, B. & Riggs, A.D. Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246, 810–813 (1989).

    Article  CAS  Google Scholar 

  23. Gonzalgo, M.L. et al. Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res. 57, 594–599 (1997).

    CAS  PubMed  Google Scholar 

  24. El-Maarri, O., Herbiniaux, U., Walter, J. & Oldenburg, J. A rapid, quantitative, non-radioactive bisulfite-SNuPE- IP RP HPLC assay for methylation analysis at specific CpG sites. Nucleic Acids Res. 30, e25 (2002).

    Article  Google Scholar 

  25. Tost, J., Schatz, P., Schuster, M., Berlin, K. & Gut, I.G. Analysis and accurate quantification of CpG methylation by MALDI mass spectrometry. Nucleic Acids Res. 31, e50 (2003).

    Article  Google Scholar 

  26. Eads, C.A. et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 28, e32 (2000).

    Article  CAS  Google Scholar 

  27. Thomas, S.W., Joly, G.D. & Swager, T.M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107, 1339–1386 (2007).

    Article  CAS  Google Scholar 

  28. Feng, F. et al. Fluorescent conjugated polyelectrolytes for biomacromolecule detection. Adv. Mater. 20, 2959–2964 (2008).

    Article  CAS  Google Scholar 

  29. Gaylord, B.S., Heeger, A.J. & Bazan, G.C. DNA hybridization detection with water-soluble conjugated polymers and chromophore-labeled single-stranded DNA. J. Am. Chem. Soc. 125, 896–900 (2003).

    Article  CAS  Google Scholar 

  30. Pu, K.-Y. & Liu, B. Optimizing the cationic conjugated polymer-sensitized fluorescent signal of dye labeled oligonucleotide for biosensor applications. Biosens. Bioelectron. 24, 1067–1073 (2009).

    Article  CAS  Google Scholar 

  31. Förster, T. Intramolecular energy migration and fluorescence. Ann. Phys. 2, 55–75 (1948).

    Article  Google Scholar 

  32. Duan, X., Li, Z., He, F. & Wang, S. A sensitive and homogeneous SNP detection using cationic conjugated polymers. J. Am. Chem. Soc. 129, 4154–4155 (2007).

    Article  CAS  Google Scholar 

  33. Duan, X., Liu, L. & Wang, S. Homogeneous and one-step fluorescent allele-specific PCR for SNP genotyping assays using conjugated polyelectrolytes. Biosens. Bioelectron. 24, 2095–2099 (2009).

    Article  CAS  Google Scholar 

  34. Ratge, D., Scheiblhuber, B., Landt, O., Berg, J. & Knabbe, C. Two-round rapid-cycle RT-PCR in single closed capillaries increases the sensitivity of HCV RNA detection and avoids amplicon carry-over. J. Clin. Virol. 24, 161–172 (2002).

    Article  CAS  Google Scholar 

  35. Kwok, S. & Higuchi, R. Avoiding false positives with PCR. Nature 339, 237–238 (1989).

    Article  CAS  Google Scholar 

  36. Duan, X. et al. Single-nucleotide polymorphism (SNP) genotyping using cationic conjugated polymers in homogeneous solution. Nat. Protoc. 4, 984–991 (2009).

    Article  Google Scholar 

  37. Sambrook, J. & Russell, D.W. Molecular Cloning: A Laboratory Manual 3rd ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (Nos. 90913014 and 20725308) and to the Major Research Plan of China (No. 2006CB932102).

Author information

Authors and Affiliations

Authors

Contributions

F.F. conducted experiments and data analysis, and wrote the paper; L.L. conducted experiments and data analysis; S.W. designed experiments, performed data analysis and wrote the paper.

Corresponding author

Correspondence to Shu Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, F., Liu, L. & Wang, S. Fluorescent conjugated polymer-based FRET technique for detection of DNA methylation of cancer cells. Nat Protoc 5, 1255–1264 (2010). https://doi.org/10.1038/nprot.2010.79

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.79

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer