Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons

Abstract

Neurons in cortical sensory regions receive modality-specific information through synapses that are located on their dendrites. Recently, the use of two-photon microscopy combined with whole-cell recordings has helped to identify visually evoked dendritic calcium signals in mouse visual cortical neurons in vivo. The calcium signals are restricted to small dendritic domains ('hotspots') and they represent visual synaptic inputs that are highly tuned for orientation and direction. This protocol describes the experimental procedures for the recording and the analysis of these visually evoked dendritic calcium signals. The key points of this method include delivery of fluorescent calcium indicators through the recording patch pipette, selection of an appropriate optical plane with many dendrites, hyperpolarization of the membrane potential and two-photon imaging. The whole protocol can be completed in 5–6 h, including 1–2 h of two-photon calcium imaging in combination with stable whole-cell recordings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental arrangement for in vivo dendritic imaging in combination with whole-cell recordings.
Figure 2: In vivo two-photon imaging of visually evoked dendritic calcium signals.
Figure 3: Extraction of local dendritic calcium transients from two-photon images.

Similar content being viewed by others

References

  1. London, M. & Häusser, M. Dendritic computation. Annu. Rev. Neurosci. 28, 503–532 (2005).

    Article  CAS  Google Scholar 

  2. Johnston, D. & Narayanan, R. Active dendrites: colorful wings of the mysterious butterflies. Trends. Neurosci. 31, 309–316 (2008).

    Article  CAS  Google Scholar 

  3. Larkum, M.E. & Nevian, T. Synaptic clustering by dendritic signalling mechanisms. Curr. Opin. Neurobiol. 18, 321–331 (2008).

    Article  CAS  Google Scholar 

  4. Ohki, K. & Reid, R.C. Specificity and randomness in the visual cortex. Curr. Opin. Neurobiol. 17, 401–407 (2007).

    Article  CAS  Google Scholar 

  5. Bloodgood, B.L. & Sabatini, B.L. Ca2+ signaling in dendritic spines. Curr. Opin. Neurobiol. 17, 345–351 (2007).

    Article  CAS  Google Scholar 

  6. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995).

    Article  CAS  Google Scholar 

  7. Müller, W. & Connor, J.A. Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses. Nature 354, 73–76 (1991).

    Article  Google Scholar 

  8. Eilers, J., Augustine, G.J. & Konnerth, A. Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature 373, 155–158 (1995).

    Article  CAS  Google Scholar 

  9. Häusser, M. & Mel, B. Dendrites: bug or feature? Curr. Opin. Neurobiol. 13, 372–383 (2003).

    Article  Google Scholar 

  10. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).

    Article  CAS  Google Scholar 

  11. Helmchen, F., Svoboda, K., Denk, W. & Tank, D.W. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat. Neurosci. 2, 989–996 (1999).

    Article  CAS  Google Scholar 

  12. Murayama, M. et al. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457, 1137–1141 (2009).

    Article  CAS  Google Scholar 

  13. Waters, J., Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 23, 8558–8567 (2003).

    Article  CAS  Google Scholar 

  14. Waters, J. & Helmchen, F. Boosting of action potential backpropagation by neocortical network activity in vivo. J. Neurosci. 24, 11127–11136 (2004).

    Article  CAS  Google Scholar 

  15. Svoboda, K., Helmchen, F., Denk, W. & Tank, D.W. Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo. Nat. Neurosci. 2, 65–73 (1999).

    Article  CAS  Google Scholar 

  16. Helmchen, F. & Waters, J. Ca2+ imaging in the mammalian brain in vivo. Eur. J. Pharmacol. 447, 119–129 (2002).

    Article  CAS  Google Scholar 

  17. Jia, H., Rochefort, N.L., Chen, X. & Konnerth, A. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312 (2010).

    Article  CAS  Google Scholar 

  18. Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Häusser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat. Methods 5, 61–67 (2008).

    Article  CAS  Google Scholar 

  19. Bollmann, J.H. & Engert, F. Subcellular topography of visually driven dendritic activity in the vertebrate visual system. Neuron 61, 895–905 (2009).

    Article  CAS  Google Scholar 

  20. Margrie, T.W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch. 444, 491–498 (2002).

    Article  CAS  Google Scholar 

  21. Nevian, T. & Helmchen, F. Calcium indicator loading of neurons using single-cell electroporation. Pflugers Arch. 454, 675–688 (2007).

    Article  CAS  Google Scholar 

  22. Nagayama, S. et al. In vivo simultaneous tracing and Ca2+ imaging of local neuronal circuits. Neuron 53, 789–803 (2007).

    Article  CAS  Google Scholar 

  23. Theer, P., Hasan, M.T. & Denk, W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett. 28, 1022–1024 (2003).

    Article  CAS  Google Scholar 

  24. Jung, J.C. & Schnitzer, M.J. Multiphoton endoscopy. Opt. Lett. 28, 902–904 (2003).

    Article  Google Scholar 

  25. Mank, M. & Griesbeck, O. Genetically encoded calcium indicators. Chem. Rev. 108, 1550–1564 (2008).

    Article  CAS  Google Scholar 

  26. Hires, S.A., Tian, L. & Looger, L.L. Reporting neural activity with genetically encoded calcium indicators. Brain Cell. Biol. 36, 69–86 (2008).

    Article  CAS  Google Scholar 

  27. Miyawaki, A. Fluorescence imaging of physiological activity in complex systems using GFP-based probes. Curr. Opin. Neurobiol. 13, 591–596 (2003).

    Article  CAS  Google Scholar 

  28. Lutcke, H. et al. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front. Neural. Circuits 4, 9 (2010).

    PubMed  PubMed Central  Google Scholar 

  29. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  Google Scholar 

  30. Rochefort, N.L. & Konnerth, A. Genetically encoded Ca2+ sensors come of age. Nat. Methods 5, 761–762 (2008).

    Article  CAS  Google Scholar 

  31. Niell, C.M. & Stryker, M.P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Y. Kovalchuk for his help in the initial experiments. This study was supported by grants from Deutsche Forschungsgemeinschaft (DFG) to A.K. and from the Friedrich Schiedel Foundation. A.K. is a Carl von Linde Senior Fellow of the Institute for Advanced Study of the Technische Universität München. H.J. and N.L.R. were supported by the DFG (IRTG 1373).

Author information

Authors and Affiliations

Authors

Contributions

H.J., N.L.R., X.C. and A.K. performed the experiments and the analysis. H.J. developed the program for data analysis. A.K. wrote the paper together with H.J., N.L.R. and X.C.

Corresponding author

Correspondence to Arthur Konnerth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, H., Rochefort, N., Chen, X. et al. In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons. Nat Protoc 6, 28–35 (2011). https://doi.org/10.1038/nprot.2010.169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.169

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing