Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Cryo-EM of macromolecular assemblies at near-atomic resolution

Abstract

With single-particle electron cryomicroscopy (cryo-EM), it is possible to visualize large, macromolecular assemblies in near-native states. Although subnanometer resolutions have been routinely achieved for many specimens, state of the art cryo-EM has pushed to near-atomic (3.3–4.6 Å) resolutions. At these resolutions, it is now possible to construct reliable atomic models directly from the cryo-EM density map. In this study, we describe our recently developed protocols for performing the three-dimensional reconstruction and modeling of Mm-cpn, a group II chaperonin, determined to 4.3 Å resolution. This protocol, utilizing the software tools EMAN, Gorgon and Coot, can be adapted for use with nearly all specimens imaged with cryo-EM that target beyond 5 Å resolution. Additionally, the feature recognition and computational modeling tools can be applied to any near-atomic resolution density maps, including those from X-ray crystallography.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cryo-EM density map reconstruction process.
Figure 2: Cα backbone model generation.
Figure 3: Atomic model generation.
Figure 4: CTF curve.
Figure 5: Mm-cpn refinement.
Figure 6: FSC curve.
Figure 7: SSE identification.
Figure 8: SSE correspondence.
Figure 9: Modeling in Gorgon.
Figure 10: Optimization with Coot.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Chiu, W., Baker, M.L., Jiang, W., Dougherty, M. & Schmid, M.F. Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13, 363–372 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Jiang, W., Baker, M.L., Ludtke, S.J. & Chiu, W. Bridging the information gap: computational tools for intermediate resolution structure interpretation. J. Mol. Biol. 308, 1033–1044 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Baker, M.L., Ju, T. & Chiu, W. Identification of secondary structure elements in intermediate-resolution density maps. Structure 15, 7–19 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baker, M.L. et al. Architecture of the herpes simplex virus major capsid protein derived from structural bioinformatics. J. Mol. Biol. 331, 447–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Ludtke, S.J., Serysheva, I.I., Hamilton, S.L. & Chiu, W. The pore structure of the closed RyR1 channel. Structure 13, 1203–1211 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, J.Z. et al. Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. Proc. Natl. Acad. Sci. USA 106, 10644–10648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng, L. et al. Backbone model of an Aquareovirus virion by cryo-electron microscopy and bioinformatics. J. Mol. Biol. 397, 835–851 (2009).

    Google Scholar 

  8. Cong, Y. et al. 4.0-Å resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc. Natl. Acad. Sci. USA 11, 4967–4972 (2010).

    Article  Google Scholar 

  9. Jiang, W. et al. Backbone structure of the infectious epsilon15 virus capsid revealed by electron cryomicroscopy. Nature 451, 1130–1134 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Ludtke, S.J. et al. De novo backbone trace of GroEL from single particle electron cryomicroscopy. Structure 16, 441–448 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Sachse, C. et al. High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus. J. Mol. Biol. 371, 812–835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu, X., Jin, L. & Zhou, Z.H. 3.88 Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 453, 415–419 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, J. et al. Mechanism of folding chamber closure in a group II chaperonin. Nature 463, 379–383 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, X. et al. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc. Natl. Acad. Sci. USA 105, 1867–1872 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, X. et al. Structural changes in a marine Podovirus associated with release of its genome into Prochlorococcus. Nat. Struct. Mol. Biol. 17, 830–836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Ludtke, S.J., Jakana, J., Song, J.L., Chuang, D.T. & Chiu, W A 11.5Å single particle reconstruction of GroEL using EMAN. J. Mol. Biol. 314, 253–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, C. et al. Estimating contrast transfer function and associated parameters by constrained non-linear optimization. J. Microsc. 233, 391–403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saad, A. et al. Fourier amplitude decay of electron cryomicroscopic images of single particles and effects on structure determination. J. Struct. Biol. 133, 32–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids. Res. 25, 3889–3402 (1997).

    Article  Google Scholar 

  25. Pollastri, G., Przybylski, D., Rost, B. & Baldi, P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47, 228–235 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Cole, C., Barber, J.D. & Barton, G.J. The Jpred 3 secondary structure prediction server. Nucleic Acids. Res. 36, W197–W201 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rost, B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 266, 525–539 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. McGuffin, L.J., Bryson, K. & Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Kirschner, A. & Frishman, D. Prediction of beta-turns and beta-turn types by a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN). Gene 422, 22–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Booth, C.R. et al. Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT. Nat. Struct. Mol. Biol. 15, 746–753 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shomura, Y. et al. Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. J. Mol. Biol. 335, 1265–1278 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Abeysinghe, S., Ju, T., Baker, M.L. & Chiu, W. Shape modeling and matching in identifying 3D protein structures. Comput. Aided Des. 40, 708–720 (2008).

    Article  Google Scholar 

  34. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta. Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  35. Maupetit, J., Gautier, R. & Tufféry, P. SABBAC: online structural alphabet-based protein BackBone reconstruction from Alpha-Carbon trace. Nucleic. Acids Res. 34, W147–W151 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shaikh, T.R. et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc. 3, 1941–1974 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, X., Jiang, W., Jakana, J. & Chiu, W. Averaging tens to hundreds of icosahedral particle images to resolve protein secondary structure elements using a Multi-path Simulated Annealing optimization algorithm. J. Struct. Biol. 160, 11–27 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmid, M.F. & Booth, C.R. Methods for aligning and for averaging 3D volumes with missing data. J. Struct. Biol. 161, 243–248 (2008).

    PubMed  Google Scholar 

  40. Radermacher, M. Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electron. Microsc. Tech. 9, 359–394 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Van Heel, M. Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21, 111–123 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Institutes of Health through the Nanomedicine Development Center (PN1EY016525), the Nanobiology Training Program (R90DK71504), the Institute of General Medical Sciences (R01GM079429, R01GM080139), the National Center for Research Resources (P41RR002250) and the National Science Foundation (IIS-0705644, IIS-0705474).

Author information

Authors and Affiliations

Authors

Contributions

M.L.B. developed Gorgon, the cryo-EM–based modeling protocol and modeled Mm-cpn. S.J.L. developed EMAN and the reconstruction protocol. J.Z. performed the image processing and reconstructions for Mm-cpn. All authors contributed to the preparation of the paper.

Corresponding author

Correspondence to Wah Chiu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, M., Zhang, J., Ludtke, S. et al. Cryo-EM of macromolecular assemblies at near-atomic resolution. Nat Protoc 5, 1697–1708 (2010). https://doi.org/10.1038/nprot.2010.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.126

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics