Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Determination of viral production in aquatic sediments using the dilution-based approach

Abstract

Viruses are the most abundant and dynamic biological entities in the world's ecosystems. Marine sediments, the largest biome in the world, have the potential to represent an optimal environment for viral development. To assess the viral effect on their hosts, and to understand the ecological role of the viruses in the benthic food webs and biogeochemical cycles, measurements of benthic viral production are needed. Different direct and indirect approaches have been proposed to estimate viral production in aquatic sediments, but a standardized protocol is not available yet. The method presented in this protocol relies on the short-time incubations of sediment samples with virus-free seawater, and the subsequent determination of the increase in viral abundance over time by epifluorescence microscopy. The protocol described here is highly reliable, inexpensive and easy to use. The entire procedure takes approximately 3 days to be completed, but the method allows the parallel processing of several sediment samples, which is recommended in ecological studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epifluorescence microscopy images of 0.02 μm Anodisc filters stained with SYBR Green I from sediment samples.
Figure 2: Changes in viral abundance (expressed as number of viruses per gram) during time-course incubation experiments carried out on different marine-sediment samples.

Similar content being viewed by others

References

  1. Fuhrman, J.A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Suttle, C.A. Viruses in the sea. Nature 437, 356–361 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Danovaro, R. et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454, 1084–1087 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Heldal, M. & Bratbak, G. Production and decay of viruses in aquatic environments. Mar. Ecol. Prog. Ser. 72, 205–212 (1991).

    Article  Google Scholar 

  5. Waterbury, J.B. & Valois, F.W. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. Environ. Microbiol. 59, 3393–3399 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Proctor, L.M. & Fuhrman, J.A. Viral mortality of marine bacteria and cyanobacteria. Nature 343, 60–62 (1990).

    Article  Google Scholar 

  7. Weinbauer, M.G., Fuks, D. & Peduzzi, P. Distribution of viruses and dissolved DNA along a coastal trophic gradient in the northern Adriatic sea. Appl. Environ. Microbiol. 59, 4074–4082 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Steward, G.F., Wikner, J., Smith, D.C., Cochlan, W.P. & Azam, F. Estimation of virus production in the sea. 1. Method development. Mar. Microb. Food Webs 6, 57–78 (1992).

    Google Scholar 

  9. Wilhelm, S.W., Briden, S. & Suttle, C.A. A dilution technique for the direct measurement of viral production: a comparison in stratified and tidally mixed coastal waters. Microb. Ecol. 43, 168–173 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Noble, R.T. & Fuhrman, J.A. Rapid virus production and removal as measured with fluorescently labeled viruses as tracers. Appl. Environ. Microbiol. 66, 3790–3797 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Binder, B. Reconsidering the relationship between virally induced prokaryotic mortality and frequency of infected cells. Aquat. Microb. Ecol. 18, 207–215 (1999).

    Article  Google Scholar 

  12. Winget, D.M., Williamson, K.E., Helton, R.R. & Wommack, K.E. Tangential flow diafiltration: an improved technique for estimation of virioplankton production. Aquat. Microb. Ecol. 41, 221–232 (2005).

    Article  Google Scholar 

  13. Helton, R.R., Cottrell, M.T., Kirchman, D.L. & Wommack, K.E. Evaluation of incubation-based methods for estimating virioplankton production in estuaries. Aquat. Microb. Ecol. 41, 209–219 (2005).

    Article  Google Scholar 

  14. Fischer, U.R., Wieltschnig, C., Kirschner, A.K.T. & Velimirov, B. Does virus-induced lysis contribute significantly to prokaryotic mortality in the oxygenated sediment layer of shallow oxbow lakes? Appl. Environ. Microbiol. 69, 5281–5289 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fischer, U.R., Weisz, W., Wieltsching, C., Kirschner, A.K.T. & Velimirov, B. Benthic and pelagic viral decay experiments: a model-based analysis and its applicability. Appl. Environ. Microbiol. 70, 6706–6713 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fischer, U.R., Wieltschnig, C., Kirschner, A.K.T. & Velimirov, B. Contribution of virus-induced lysis and protozoan grazing to benthic prokaryotic mortality estimated simultaneously in microcosms. Environ. Microbiol. 8, 1394–1407 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Bettarel, Y., Bouvy, M., Dumont, C. & Sime-Ngando, T. Virus-bacterium interactions in water and sediment of West African inland aquatic systems. Appl. Environ. Microbiol. 72, 5274–5282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Filippini, M., Buesing, N., Bettarel, Y., Sime-Ngando, T. & Gessner, M.O. Infection paradox: high abundance but low impact of freshwater benthic viruses. Appl. Environ. Microbiol. 72, 4893–4898 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Proctor, L.M., Okubo, A. & Fuhrman, J.A. Calibrating estimates of phage-induced mortality in marine bacteria: ultrastructural studies of marine bacteriophage development from one-step growth experiments. Microb. Ecol. 25, 161–182 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Guixa-Boixareu, N., Caldero´n-Paz, J.I., Heldal, M., Bratbak, G. & Pedròs-Aliò, C. Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat. Microb. Ecol. 11, 215–227 (1996).

    Article  Google Scholar 

  21. Mei, M.L. & Danovaro, R. Virus production and life strategies in aquatic sediments. Limnol. Oceanogr. 49, 459–470 (2004).

    Article  Google Scholar 

  22. Glud, R. & Middelboe, M. Virus and bacteria dynamics of a coastal sediment: implication for benthic carbon cycling. Limnol. Oceanogr. 49, 2073–2081 (2004).

    Article  Google Scholar 

  23. Middelboe, M., Glud, R.N., Wenzhofer, F., Ogurib, K. & Kitazato, H. Spatial distribution and activity of viruses in the deep-sea sediments of Sagami Bay, Japan. Deep Sea Res. I. 53, 1–13 (2006).

    Article  Google Scholar 

  24. Hewson, I. & Fuhrman, J.A. Viriobenthos production and virioplankton sorptive scavenging by suspended sediment particles in coastal and pelagic waters. Microb. Ecol. 46, 337–347 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Danovaro, R. et al. Viriobenthos in freshwater and marine sediments: a review. Freshwat. Biol. 53, 1186–1213 (2008).

    Article  Google Scholar 

  26. Corinaldesi, C., Dell'Anno, A. & Danovaro, R. Viral infection plays a key role in extracellular DNA dynamics in marine anoxic systems. Limnol. Oceanogr. 52, 508–516 (2007).

    Article  CAS  Google Scholar 

  27. Chen, F., Lu, J.R., Binder, B., Liu, Y. & Hodson, R.E. Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR Gold. Appl. Environ. Microbiol. 67, 539–545 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patel, A. et al. Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat. Protoc. 2, 269–276 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Danovaro, R., Dell'Anno, A., Trucco, A., Serresi, M. & Vanucci, S. Determination of virus abundance in marine sediments. Appl. Environ. Microbiol. 67, 1384–1387 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wen, K., Ortmann, A.C. & Suttle, C.A. Accurate estimation of viral abundance by epifluorescence microscopy. Appl. Environ. Microbiol. 70, 3862–3867 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Helton, R.R., Liu, L. & Wommack, K.E. Assessment of factors influencing direct enumeration of viruses within estuarine sediments. Appl. Environ. Microbiol. 72, 4767–4774 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Middelboe, M., Glud, R.N. & Finster, K. Distribution of viruses and bacteria in relation to diagenic activity in an estuarine sediment. Limnol. Oceanogr. 48, 1447–1456 (2003).

    Article  Google Scholar 

  33. Fischer, U.R., Kirschner, A.K.T. & Velimirov, B. Optimization of extraction and estimation of viruses in silty freshwater sediments. Aquat. Microb. Ecol. 40, 207–216 (2005).

    Article  Google Scholar 

  34. Hewson, I., O'Neil, J.M., Heil, C., Bratbak, G. & Dennison, W. Effects of concentrated viral communities on photosynthesis and community composition of co-occurring benthic microalgae and phytoplankton. Aquat. Microb. Ecol. 25, 1–10 (2001).

    Article  Google Scholar 

  35. Duhamel, S. & Jacquet, S. Flow cytometric analysis of bacteria and virus-like particles in lake sediments. J. Microbiol. Method 64, 316–322 (2006).

    Article  CAS  Google Scholar 

  36. Noble, R.T. & Fuhrman, J.A. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14, 113–118 (1998).

    Article  Google Scholar 

  37. Shibata, A. et al. Comparison of SYBR Green I and SYBR Gold stains for enumerating bacteria and viruses by epifluorescence microscopy. Aquat . Microb. Ecol. 43, 223–231 (2006).

    Article  Google Scholar 

  38. Noble, R.T. & Fuhrman, J.A. Breakdown and microbial uptake of marine viruses and other lysis products. Aquat. Microb. Ecol. 20, 1–11 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the EU within the framework of the project HERMES (GOCE-CT-2005-511234-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Danovaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dell'Anno, A., Corinaldesi, C., Magagnini, M. et al. Determination of viral production in aquatic sediments using the dilution-based approach. Nat Protoc 4, 1013–1022 (2009). https://doi.org/10.1038/nprot.2009.82

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.82

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing