Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Stretching polysaccharides on live cells using single molecule force spectroscopy

Abstract

The knowledge of molecular mechanisms underlying the adhesive and mechanical properties of cell surface-associated molecules is a key to understanding their functions. In this context, single-molecule force spectroscopy (SMFS) has recently offered new opportunities for probing the adhesion and mechanics of polysaccharides and proteins on live cells. Here we present a protocol that we have used to analyze polysaccharide chains of different nature on the bacterium Lactobacillus rhamnosus GG. We describe procedures (i) for functionalizing atomic force microscopy (AFM) tips with Pseudomonas aeruginosa–I or concanavalin A lectins, (ii) for stretching specific polysaccharide molecules on live bacteria using SMFS with lectin tips and (iii) for mapping the localization, adhesion and extension of individual polysaccharide chains. We also discuss data treatment, emphasizing how to gain insight into the elasticity of the stretched macromolecules using the extended freely jointed chain model. Even though the presented protocol is for L. rhamnosus, it can be easily modified for other cell types. For users having expertise in the field, the entire protocol can be completed in about 5 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stretching single-polysaccharide molecules on Lactobacillus rhamnosus GG (LGG) using SMFS with lectin-modified tips.
Figure 2: Mapping the localization, adhesion and extension of individual polysaccharide chains.
Figure 3: The CMPG5413 mutant strain impaired in cell adherence and polysaccharide production displays very different polymer properties.
Figure 4: Stretching single mannoproteins on the yeast Saccharomyces cerevisiae.

Similar content being viewed by others

References

  1. Costerton, J.W., Stewart, P.S. & Greenberg, E.P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  Google Scholar 

  2. Ubbink, J. & Schar-Zammaretti, P. Probing bacterial interactions: integrated approaches combining atomic force microscopy, electron microscopy and biophysical techniques. Micron 36, 293–320 (2005).

    Article  CAS  Google Scholar 

  3. Camesano, T.A., Liu, Y.T. & Datta, M. Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques. Adv. Wat. Res. 30, 1470–1491 (2007).

    Article  CAS  Google Scholar 

  4. Dufrêne, Y.F. Towards nanomicrobiology using atomic force microscopy. Nat. Rev. Microbiol. 6, 674–680 (2008).

    Article  Google Scholar 

  5. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    Article  CAS  Google Scholar 

  6. Bustamante, C., Macosko, J.C. & Wuite, G.J.L. Grabbing the cat by the tail: manipulating molecules one by one. Nat. Rev. Mol. Cell Biol. 1, 130–136 (2000).

    Article  CAS  Google Scholar 

  7. Neuman, K.C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    Article  CAS  Google Scholar 

  8. Müller, D.J. & Dufrêne, Y.F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotech. 3, 261–269 (2008).

    Article  Google Scholar 

  9. Sotomayor, M. & Schulten, K. Single-molecule experiments in vitro and in silico . Science 316, 1144–1148 (2007).

    Article  CAS  Google Scholar 

  10. Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H.E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Article  CAS  Google Scholar 

  11. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  12. Oberhauser, A.F., Marszalek, P.E., Erickson, H.P. & Fernandez, J.M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

    Article  CAS  Google Scholar 

  13. Marszalek, P.E., Oberhauser, A.F., Pang, Y.P. & Fernandez, J.M. Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature 396, 661–664 (1998).

    Article  CAS  Google Scholar 

  14. Oesterhelt, F. et al. Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146 (2000).

    Article  CAS  Google Scholar 

  15. Oberhauser, A.F., Hansma, P.K., Carrion-Vazquez, M. & Fernandez, J.M. Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc. Natl. Acad. Sci. USA 98, 468–472 (2001).

    Article  CAS  Google Scholar 

  16. Cao, Y. & Li, H. Polyprotein of GB1 is an ideal artificial elastomeric protein. Nat. Mater. 6, 109–114 (2007).

    Article  CAS  Google Scholar 

  17. Lee, G. et al. Nanospring behaviour of ankyrin repeats. Nature 440, 246–249 (2006).

    Article  CAS  Google Scholar 

  18. Viani, M.B. et al. Small cantilevers for force spectroscopy of single molecules. J. Appl. Phys. 86, 2258–2262 (1999).

    Article  CAS  Google Scholar 

  19. Janshoff, A., Neitzert, M., Oberdörfer, Y. & Fuchs, H. Force spectroscopy of molecular systems—single molecule spectroscopy of polymers and biomolecules. Angew. Chem. Int. Ed. 39, 3213–3237 (2000).

    Google Scholar 

  20. Hinterdorfer, P. & Dufrêne, Y.F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).

    Article  CAS  Google Scholar 

  21. Ebner, A. et al. Functionalization of probe tips and supports for single molecule recognition force microscopy. Top. Curr. Chem. 285, 29–76 (2008).

    Article  CAS  Google Scholar 

  22. Francius, G. et al. Detection, localization and conformational analysis of single polysaccharide molecules on live bacteria. ACS Nano. 2, 1921–1929 (2008).

    Article  CAS  Google Scholar 

  23. Hinterdorfer, P., Baumgartner, W., Gruber, H.J., Schilcher, K. & Schindler, H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 3477–3481 (1996).

    Article  CAS  Google Scholar 

  24. Riener, C.K. et al. Simple test system for single molecule recognition force microscopy. Anal. Chim. Acta. 479, 59–75 (2003).

    Article  CAS  Google Scholar 

  25. Ebner, A. et al. A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjug. Chem. 18, 1176–1184 (2007).

    Article  CAS  Google Scholar 

  26. Dupres, V. et al. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat. Methods 2, 515–520 (2005).

    Article  CAS  Google Scholar 

  27. Alsteens, D. et al. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM. Nanotechnology 19 384005(9pp) (2008).

  28. Müller, D.J. & Engel, A. Atomic force microscopy and spectroscopy of native membrane proteins. Nat. Protoc. 2, 2191–2197 (2007).

    Article  Google Scholar 

  29. Dague, E., Delcorte, A., Latgé, J.P. & Dufrêne, Y.F. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis. Langmuir 24, 2955–2959 (2008).

    Article  CAS  Google Scholar 

  30. Gaboriaud, F. & Dufrêne, Y.F. Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces. Colloids Surf. B Biointerfaces 54, 10–19 (2007).

    Article  CAS  Google Scholar 

  31. Gad, M., Itoh, A. & Ikai, A. Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy. Cell Biol. Int. 21, 697–706 (1997).

    Article  CAS  Google Scholar 

  32. van der Aa, B.C. et al. Stretching cell surface macromolecules by atomic force microscopy. Langmuir 17, 3116–3119 (2001).

    Article  CAS  Google Scholar 

  33. Abu-Lail, N.I. & Camesano, T.A. Elasticity of Pseudomonas putida KT2442 surface polymers probed with single-molecule force microscopy. Langmuir 18, 4071–4081 (2002).

    Article  CAS  Google Scholar 

  34. Lower, B.H., Yongsunthon, R., Vellano, F.P. & Lower, S.K. Simultaneous force and fluorescence measurements of a protein that forms a bond between a living bacterium and a solid surface. J. Bacteriol. 187, 2127–2137 (2005).

    Article  CAS  Google Scholar 

  35. Dugdale, T.M., Dagastine, R., Chiovitti, A., Mulvaney, P. & Wetherbee, R. Single adhesive nanofibers from a live diatom have the signature fingerprint of modular proteins. Biophys. J. 89, 4252–4260 (2005).

    Article  CAS  Google Scholar 

  36. Touhami, A., Jericho, M.H., Boyd, J.M. & Beveridge, T.J. Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa Pili by using atomic force microscopy. J. Bacteriol. 188, 370–377 (2006).

    Article  CAS  Google Scholar 

  37. Miller, E., Garcia, T., Hultgren, S. & Oberhauser, A.F. The mechanical properties of E-coli type 1 pili measured by atomic force microscopy techniques. Biophys. J. 91, 3848–3856 (2006).

    Article  CAS  Google Scholar 

  38. Lugmaier, R.A., Schedin, S., Kuhner, F. & Benoit, M. Dynamic restacking of Escherichia coli P-pili. Eur. Biophys. J. Biophys. Lett. 37, 111–120 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank our colleagues and collaborators for sharing exciting experiments and discussions. This work was supported by the National Foundation for Scientific Research (FNRS), the Université Catholique de Louvain (Fonds Spéciaux de Recherche), the Région wallonne, the Federal Office for Scientific, Technical and Cultural Affairs (Interuniversity Poles of Attraction Programme), the Research Department of the Communauté française de Belgique (Concerted Research Action) and Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (FWO). D.A. and Y.F.D. are Research Fellow and Senior Research Associate, respectively at the FRS-FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves F Dufrêne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francius, G., Alsteens, D., Dupres, V. et al. Stretching polysaccharides on live cells using single molecule force spectroscopy. Nat Protoc 4, 939–946 (2009). https://doi.org/10.1038/nprot.2009.65

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.65

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing