Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Multiplexed immunophenotyping of human antigen-presenting cells in whole blood by polychromatic flow cytometry

Abstract

We describe two modular protocols for immunostaining and multiparameter flow cytometric analysis of major human antigen-presenting cells (APCs; e.g., dendritic cells, monocytes and B lymphocytes) in minimally manipulated whole blood samples. Simultaneous detection of up to eight colors is enabled by careful selection and testing of cell-subset-defining monoclonal antibodies (anchor markers) in the appropriate fluorochrome combinations, in order to show the quantification of surface expression levels of molecules involved in chemotaxis (e.g., CX3CR1 and CCR2), adhesion (e.g., CD11b and CD62L), antigen presentation (e.g., CD83, CD86 and CD209) and immune regulation (e.g., CD101) on circulating APCs. Each immunostaining reaction requires as little as 50–100 μl of peripheral whole blood and no density-gradient separation, and the entire procedure from preparation of reagents to flow cytometry can be completed in <5 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram illustrating the workflow for multiplexed immunophenotypic analysis of the major circulating antigen-presenting cell subsets by flow cytometry.
Figure 2: Flow cytometric analysis of monocyte subsets and CD19+HLA-DR+ B lymphocytes in whole blood.
Figure 3: A time-course experiment showing the natural differentiation or transition of CD14+ monocytes into CD14+CD16+ cells (pink arrow at 24 h) in citrated whole blood sample even in the absence of any stimulus.
Figure 4: The systematic display of antibody–fluorochrome pairs created in the worksheet window of the BD FACSDiva software is useful in organizing large number of bivariate plots for visualizing the correct spectral overlap compensation, quality control and for discovering novel cell subsets.
Figure 5: Analysis of two major DC subsets in whole blood.
Figure 6: DC subset-defining markers for identifying MDCs and PDCs as described in Protocol B.

Similar content being viewed by others

References

  1. Ziegler-Heitbrock, H.W.L. Definition of human blood monocytes. J. Leukoc. Biol. 67, 603–606 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Grage-Griebenow, E., Flad, H.D. & Ernst, M. Heterogeneity of human peripheral blood monocyte subsets. J. Leukoc. Biol. 69, 11–20 (2001).

    CAS  PubMed  Google Scholar 

  3. Steinman, R.M. & Nussenzweig, M.C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl. Acad. Sci. USA 99, 351–358 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Al-Daccak, R., Mooney, N. & Charron, D. MHC class II signaling in antigen-presenting cells. Curr. Opin. Immunol. 16, 108–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Gordon, S. & Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005).

    Article  CAS  Google Scholar 

  6. Tacke, F. et al. Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. J. Exp. Med. 203, 583–597 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reis e Sousa, C. Dendritic cells in a mature age. Nat. Rev. Immunol. 6, 476–483 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Davis, M.M. A prescription for human immunology. Immunity 29, 835–838 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hayday, A.C. & Peakman, M. The habitual, diverse and surmountable obstacles to human immunology research. Nat. Immunol. 9, 575–580 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Baumgarth, N. & Roederer, M. A practical approach to multicolor flow cytometry for immunophenotyping. J. Immunol. Methods 243, 77–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Perfetto, S.P., Chattopadhyay, P.K. & Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4, 648–655 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Willmann, K. & Dunne, J.F. A flow cytometric immune function assay for human peripheral blood dendritic cells. J. Leukoc. Biol. 67, 536–544 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Seder, R.A., Darrah, P.A. & Roederer, M. T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol. 8, 247–258 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Dendrou, C.A. et al. Gene-to-cell-specific protein phenotype for the autoimmune locus IL2RA using fresh blood from a genotype-selectable bioresource. Nat. Genet. 41, 1011–1015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tamul, K.R., Schmitz, J.L., Kane, K. & Folds, J.D. Comparison of the effects of Ficoll-Hypaque separation and whole blood lysis on results of immunophenotypic analysis of blood and bone marrow samples from patients with hematologic malignancies. Clin. Diagn. Lab Immunol. 2, 337–342 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jansen, K. et al. Polychromatic flow cytometric high-throughput assay to analyze the innate immune response to Toll-like receptor stimulation. J. Immunol. Methods 336, 183–192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Perfetto, S.P., Ambrozak, D., Nguyen, R., Chattopadhyay, P. & Roederer, M. Quality assurance for polychromatic flow cytometry. Nat. Protoc. 1, 1522–1530 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Dendrou, C.A. et al. Fluorescence intensity normalisation: correcting for time effects in large-scale flow cytometric analysis. Adv. Bioinformatics 2009 doi:10.1155/2009/476106.

    Article  Google Scholar 

  19. Passlick, B., Flieger, D. & Ziegler-Heitbrock, H.W.L. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74, 2527–2534 (1989).

    CAS  PubMed  Google Scholar 

  20. Geissmann, F., Jung, S. & Littman, D.R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Fingerle, G. et al. The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood 82, 3170–3176 (1993).

    CAS  PubMed  Google Scholar 

  22. Kawanaka, N. et al. CD14+,CD16+ blood monocytes and joint inflammation in rheumatoid arthritis. Arthritis. Rheum. 46, 2578–2586 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Belge, K.U. et al. The proinflammatory CD14+CD16+DR. monocytes are a major source of TNF. J. Immunol. 168, 3536–3542 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Spits, H., Couwenberg, F., Bakker, A.Q., Weijer, K. & Uittenbogaart, C.H. Id2 and Id3 inhibit development of CD34(+) stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2. J. Exp. Med. 192, 1775–1784 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, Y.J., Kanzler, H., Soumelis, V. & Gilliet, M. Dendritic cell lineage, plasticity and cross-regulation. Nat. Immunol. 2, 585–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275–306 (2005).

    Article  CAS  Google Scholar 

  27. Münz, C., Steinman, R.M. & Fujii, S. Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. J. Exp. Med. 202, 203–207 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Banchereau, J. & Pascual, V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25, 383–392 (2006).

    Article  CAS  Google Scholar 

  29. Fogg, D. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Dzionek, A. et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 165, 6037–6046 (2000).

    Article  CAS  Google Scholar 

  31. MacDonald, K.P. et al. Characterization of human blood dendritic cell subsets. Blood 100, 4512–4520 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Bonasio, R. & von Andrian, U.H. Generation, migration and function of circulating dendritic cells. Curr. Opin. Immunol. 18, 503–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Dzionek, A. et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. J. Exp. Med. 194, 1823–1834 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Radbruch, A. Immunofluorescence: basic considerations. In Flow Cytometry and Cell Sorting 2nd edn 2. Chapter 3 (Springer-Verlag Berlin, Heidelberg, Germany, 2000).

    Chapter  Google Scholar 

  35. Herzenberg, L.A., Tung, J., Moore, W.A., Herzenberg, L.A. & Parks, D.R. Interpreting flow cytometry data: a guide for the perplexed. Nat. Immunol. 7, 681–685 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Roederer, M. Spectral compensation for flow cytometry: visualization artefacts, limitations, and caveats. Cytometry 45, 194–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Shapiro, H.M. Parameters and probes. In Practical Flow Cytometry 4th edn. Chapter 7 (John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2003).

  38. Maecker, H.T., Frey, T., Nomura, L.E. & Trotter, J. Selecting fluorochrome conjugates for maximum sensitivity. Cytometry A 62A, 169–173 (2004).

    Article  Google Scholar 

  39. Maecker, H.T. & Trotter, J. Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69A, 1037–1042 (2006).

    Article  Google Scholar 

  40. Kawai, K. et al. CD11b-mediated migratory property of peripheral blood B cells. J. Allergy Clin. Immunol. 116, 192–197 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Identification of a B-1 B cell-specified progenitor. Nat. Immunol. 7, 293–301 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Arnold, L.W., Pennell, C.A., McCray, S.K. & Clarke, S.H. Development of B-1 cells: segregation of phosphatidylcholine-specific B cells to the B-1 population occurs after immunoglobulin gene expression. J. Exp. Med. 179, 1585–1595 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Nestle, F.O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J. Exp. Med. 202, 135–143 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Summers, K.L. et al. Reduced IFN-alpha secretion by blood dendritic cells in human diabetes. Clin. Immunol. 121, 81–89 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Peng, R., Li, Y., Brezner, K., Litherland, S. & Clare-Salzler, M.J. Abnormal peripheral blood dendritic cell populations in type 1 diabetes. Ann. NY Acad. Sci. 1005, 222–225 (2003).

    Article  PubMed  Google Scholar 

  46. Allen, J.S. et al. Plasmacytoid dendritic cells are proportionally expanded at diagnosis of type 1 diabetes and enhance islet autoantigen presentation to T-cells through immune complex capture. Diabetes 58, 138–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ochando, J.C. et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat. Immunol. 7, 652–662 (2006).

    Article  CAS  Google Scholar 

  48. Shao, L., Jacobs, A.R., Johnson, V.V. & Mayer, L. Activation of CD8+ regulatory T cells by human placental trophoblasts. J. Immunol. 174, 7539–7547 (2005).

    Article  CAS  Google Scholar 

  49. Allez, M., Brimnes, J., Dotan, I. & Mayer, L. Expansion of CD8+ T cells with regulatory function after interaction with intestinal epithelial cells. Gastroenterology 123, 1516–1526 (2002).

    Article  PubMed  Google Scholar 

  50. Bouloc, A., Bagot, M., Delaire, S., Bensussan, A. & Boumsell, L. Triggering CD101 molecule on human cutaneous dendritic cells inhibits T cell proliferation via IL-10 production. Eur. J. Immunol. 30, 3132–3139 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Ashtekar, A.R. & Saha, B. Poly′s plea: membership to the club of APCs. Trends Immunol. 24, 485–490 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Rivas, A. et al. V7, a novel leukocyte surface protein that participates in T cell activation. I. Tissue distribution and functional studies. J. Immunol. 154, 4423–4433 (1995).

    CAS  PubMed  Google Scholar 

  53. Pyne, S. et al. Automated high-dimensional flow cytometric data analysis. Proc. Natl. Acad. Sci. USA 106, 8519–8524 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Wellcome Trust, the Juvenile Diabetes Research Foundation (JDRF) International and the National Institute for Health Research Cambridge Biomedical Research Centre for funding. The Cambridge Institute for Medical Research is a recipient of the Wellcome Trust Strategic Award (079895). E.F. was funded by the JDRF and the Prince Philip Graduate Exhibition from the Cambridge Overseas Trust. L.S.W. is a Wellcome Trust Principal Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

E.F. contributed to the conception, design, performance and analysis of the protocols and wrote the manuscript. L.E. contributed to the configuration and establishment of the flow cytometer in the laboratory and to the writing of the manuscript. J.A.T. participated in the conception of the protocols and the writing of the manuscript. L.S.W. contributed to the conception, design and analysis of the protocols and to the writing of the manuscript.

Corresponding author

Correspondence to Linda S Wicker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fung, E., Esposito, L., Todd, J. et al. Multiplexed immunophenotyping of human antigen-presenting cells in whole blood by polychromatic flow cytometry. Nat Protoc 5, 357–370 (2010). https://doi.org/10.1038/nprot.2009.246

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.246

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing