Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using Trawler_standalone to discover overrepresented motifs in DNA and RNA sequences derived from various experiments including chromatin immunoprecipitation

Abstract

Genome-wide location analysis has become a standard technology to unravel gene regulation networks. The accurate characterization of nucleotide signatures in sequences is key to uncovering the regulatory logic but remains a computational challenge. This protocol describes how to best characterize these signatures (motifs) using the new standalone version of Trawler, which was designed and optimized to analyze chromatin immunoprecipitation (ChIP) data sets. In particular, we describe the three main steps of Trawler_standalone (motif discovery, clustering and visualization) and discuss the appropriate parameters to be used in each step depending on the data set and the biological questions addressed. Compared to five other motif discovery programs, Trawler_standalone is in most cases the fastest algorithm to accurately predict the correct motifs especially for large data sets. Its running time ranges within few seconds to several minutes, depending on the size of the data set and the parameters used. This protocol is best suited for bioinformaticians seeking to use Trawler_standalone in a high-throughput manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the Trawler_standalone pipeline.
Figure 2: Tunable options of Trawler_standalone.
Figure 3: Trawler_standalone output summary.
Figure 4: Occurrences of the motifs in the given sequences.
Figure 5: Input and output information.

Similar content being viewed by others

References

  1. Ettwiller, L., Paten, B., Ramialison, M., Birney, E. & Wittbrodt, J. Trawler: de novo regulatory motif discovery pipeline for chromatin immunoprecipitation. Nat. Methods 4, 563–565 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Bryne, J.C. et al. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res. 36, D102–D106 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Berger, M.F. et al. Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 133, 1266–1276 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Linhart, C., Halperin, Y. & Shamir, R. Transcription factor and microRNA motif discovery: the Amadeus platform and a compendium of metazoan target sets. Genome Res. 18, 1180–1189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hughes, J.D., Estep, P.W., Tavazoie, S. & Church, G.M. Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J. Mol. Biol. 296, 1205–1214 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, X.S., Brutlag, D.L. & Liu, J.S. An algorithm for finding protein–DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat. Biotechnol. 20, 835–839 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

  8. Pavesi, G., Mereghetti, P., Mauri, G. & Pesole, G. Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic. Acids Res. 32, W199–W203 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, X. et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl. Acad. Sci. USA 102, 4459–4464 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Linsley, P.S. et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol. Cell Biol. 27, 2240–2252 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ren, B. et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev. 16, 245–256 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cao, Y. et al. Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J. 25, 502–511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Crooks, G.E., Hon, G., Chandonia, J. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14 (6): 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34 (Database issue): D108–D110 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Griffiths-Jones, S., Saini, H.K., van Dongen, S. & Enright, A.J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clamp, M., Cuff, J., Searle, S.M. & Barton, G.J. The Jalview Java alignment editor. Bioinformatics 20, 426–427 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Roepcke, S., Grossmann, S., Rahmann, S. & Vingron, M. T-Reg Comparator: an analysis tool for the comparison of position weight matrices. Nucleic Acids Res. 33, W438–W441 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blanchette, M. et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14, 708–715 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karolchik, D. et al. The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res. 36, D773–D779 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Wittbrodt lab for fruitful discussions and Florence Besse, Dirk-Dominik Dolle and Mythily Ganapathi for testing Trawler_standalone. This work was supported by FP7-CISSTEM.

Author information

Authors and Affiliations

Authors

Contributions

Y.H. with the help of M.R. built the standalone distribution; Y.H., M.R. B.P. and L.E. have contributed to improve the algorithm; and Y.H., M.R., B.P. and L.E. have written the paper.

Corresponding author

Correspondence to Laurence Ettwiller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haudry, Y., Ramialison, M., Paten, B. et al. Using Trawler_standalone to discover overrepresented motifs in DNA and RNA sequences derived from various experiments including chromatin immunoprecipitation. Nat Protoc 5, 323–334 (2010). https://doi.org/10.1038/nprot.2009.158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.158

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing