Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Modeling Pseudomonas aeruginosa pathogenesis in plant hosts

Abstract

A pathogenic model in which both the pathogen and its host are amenable to genetic manipulation can greatly facilitate the understanding of bacterial pathogenesis. Plants are genetically tractable and can be used as experimental models for human microbial pathogenesis. We present protocols for both lettuce and Arabidopsis leaf infection models using the opportunistic human bacterial pathogen, Pseudomonas aeruginosa. The lettuce model allows for high-throughput qualitative analysis of virulence and is suitable for screening large numbers of bacterial strains, whereas the Arabidopsis model provides a quantitative approach and permits the tracking of bacterial cell proliferation in planta. The lettuce model takes 24 h including bacterial growth using store-bought lettuce, and the Arabidopsis model takes 4–6 weeks to grow the plants and a similar time as with lettuce to infect the plants. Both models are monitored for up to 5 d post-infection. These methodologies can and have been used to identify novel and critical P. aeruginosa pathogenicity agents, as virulence factors are often conserved across phylogeny.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4: The amount of cells in the inoculum can impact disease progression in Arabidopsis plants.
Figure 5: Inoculate the underside of each leaf by gently pressing the syringe against your thumb.
Figure 6
Figure 7: When inoculating lettuce midribs, avoid penetrating the middle space of the plant.
Figure 8: Infected lettuce leaves show severe rotting (black coloration) of the entire midrib when infected with the wild-type strain PA14.

Similar content being viewed by others

References

  1. Rahme, L.G. et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899–1902 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Nordmann, P., Naas, T., Fortineau, N. & Poirel, L. Superbugs in the coming new decade; multidrug resistance and prospects for treatment of Staphylococcus aureus, Enterococcus spp. and Pseudomonas aeruginosa in 2010. Curr. Opin. Microbiol. 10, 436–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Ausubel, F.M. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6, 973–979 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Rahme, L.G. et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899–1902 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Apidianakis, Y. et al. Involvement of skeletal muscle gene regulatory network in susceptibility to wound infection following trauma. PLoS ONE 2, e1356 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Apidianakis, Y. et al. Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc. Natl. Acad. Sci. USA 102, 2573–2578 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Mahajan-Miklos, S., Tan, M.-W., Rahme, L.G. & Ausubel, F.M. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model. Cell 96, 47–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Cosson, P. et al. Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J. Bacteriol. 184, 3027–3033 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahajan-Miklos, S., Rahme, L.G. & Ausubel, F.M. Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol. Microbiol. 37, 981–988 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Lau, G.W. et al. The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa . Infect. Immun. 71, 4059–4066 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoffmann, J.A. The immune response of Drosophila . Nature 426, 33–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Hoffmann, J.A. et al. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).

    Article  CAS  Google Scholar 

  13. Shan, L., He, P. & Sheen, J. Intercepting host MAPK signaling cascades by bacterial type III effectors. Cell Host Microbe 1, 167–174 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Apostol, I., Heinstein, P.F. & Low, P.S. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: role in defense and signal transduction. Plant Physiol. 90, 109–116 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Doke, N. NADPH-dependent O2-generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans . Physiol. Plant Pathol. 27, 311–322 (1985).

    Article  CAS  Google Scholar 

  16. Ohashi, Y., Brickman, J.M., Furman, E., Middleton, B. & Carey, M. Modulating the potency of an activator in a yeast in vitro transcription system. Mol. Cell Biol. 14, 2731–2739 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sutherland, M.W. The generation of oxygen radicals during host plant responses to infection. Physiol. Mol. Plant Pathol. 39, 79–94 (1991).

    Article  CAS  Google Scholar 

  18. Hunter, P. Common defences. EMBO Rep. 6, 504–507 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Broekaert, W.F., Terras, F.R., Cammue, B.P. & Osborn, R.W. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108, 1353–1358 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ganz, T. & Lehrer, R.I. Defensins. Curr. Opin. Immunol. 6, 584–589 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. van Baarlen, P., van Belkum, A. & Thomma, B.P.H.J. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects. Drug Discov. Today 12, 167–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Jha, A.K., Bais, H.P. & Vivanco, J.M. Enterococcus faecalis mammalian virulence-related factors exhibit potent pathogenicity in the Arabidopsis thaliana plant model. Infect Immun. 73, 464–475 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prithiviraj, B., Bais, H.P., Jha, A.K. & Vivanco, J.M. Staphylococcus aureus pathogenicity on Arabidopsis thaliana is mediated either by a direct effect of salicylic acid on the pathogen or by SA-dependent, NPR1-independent host responses. Plant J. 42, 417–432 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Rahme, L.G. et al. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA 94, 13245–13250 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Rahme, L.G. et al. Plants and animals share functionally common bacterial virulence factors. Proc. Natl. Acad. Sci. USA 97, 8815–8821 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Dong, X., Mindrinos, M., Davis, K.R. & Ausubel, F.M. Induction of Arabidopsis defense genes by virulent and Avirulent Pseudomonas syringae strains and by a cloned Avirulence gene. Plant Cell 3, 61–72 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Katagiri, F., Thilmony, R. & He, S.Y. The Arabidopsis thalianaPseudomonas syringae interaction. The Arabidopsis Book, Rockville, MD: American Society of Plant Biologists. DOI: 10.1199/tab.0039 (2002).

    Google Scholar 

  28. Plotnikova, J.M., Rahme, L.G. & Ausubel, F.M. Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis . Plant Physiol. 124, 1766–1774 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walker, T.S. et al. Pseudomonas aeruginosa–plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol. 134, 320–331 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baldini, R.L., Lau, G.W. & Rahme, L.G. Use of plant and insect hosts to model bacterial pathogenesis. Methods Enzymol. 358, 3–13 (2002).

    Article  PubMed  Google Scholar 

  31. Silo-Suh, L., Suh, S.-J., Sokol, P.A. & Ohman, D.E. A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proc. Natl. Acad. Sci. USA 99, 15699–15704 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Attila, C. et al. Pseudomonas aeruginosa PAO1 virulence factors and poplar tree response in the rhizosphere. Microbial Biotechnol. 1, 17–29 (2008).

    CAS  Google Scholar 

  33. Kaplan, E. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 562–563 (1958).

    Article  Google Scholar 

  34. Jander, G., Rahme, L.G. & Ausubel, F.M. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 182, 3843–3845 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miyata, S., Casey, M., Frank, D.W., Ausubel, F.M. & Drenkard, E. Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect. Immun. 71, 2404–2413 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fauvarque, M.O. et al. Role and activation of type III secretion system genes in Pseudomonas aeruginosa-induced Drosophila killing. Microb. Pathog. 32, 287–295 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Liberati, N.T. et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. USA 103, 2833–2838 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Jacobs, M.A. et al. Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc. Natl. Acad. Sci. USA 100, 14339–14344 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the research grant R01AI063433. M.S. was supported by the Shriners Research Fellowship no. 8506. Thank you to Jenifer Bush for growing and maintaining our Arabidopsis plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence G Rahme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starkey, M., Rahme, L. Modeling Pseudomonas aeruginosa pathogenesis in plant hosts. Nat Protoc 4, 117–124 (2009). https://doi.org/10.1038/nprot.2008.224

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.224

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing