Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Temperature-dependent FRET spectroscopy for the high-throughput analysis of self-assembled DNA nanostructures in real time

Abstract

We describe a method for the real-time and high-throughput monitoring of the self-assembly and disassembly of complex DNA superstructures, using temperature-dependent Förster resonance energy transfer (FRET) spectroscopy. Compared with other spectroscopic approaches, such as UV-visible and circular dichroism, the method described has advantages in terms of sensitivity, feasibility for high-throughput analysis and applicability to virtually any kind of supramolecular structure. To this end, two oligonucleotides out of the entire set building up the superstructure are labeled with a fluorescein and a tetramethylrhodamine, as FRET donor and acceptor, respectively. Correct assembly of the superstructure induces maximum FRET efficiency, whereas complete dissociation leads to minimal FRET. Monitoring of temperature-dependent FRET efficiency yields a thermal profile that is used for thermodynamic analysis. In the case of reversible and cooperative assembly/disassembly of the DNA superstructure, application of the van't Hoff law allows for the determination of the thermodynamic parameters of the process. Owing to slow temperature ramping, the entire assay requires about 17 h. The protocol allows to simultaneously analyze up to 384 samples with only 30 μl sample volume each.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Characterization of two different 4 × 4 DNA tiles by gel electrophoresis and FRET spectroscopy.
Figure 3: Labeling strategies used for the FRET thermal analysis of the self-assembly of DNA superstructures.
Figure 4: Schematic representation of the one-tile labeling strategy used to monitor the self-assembly of a DNA nanoarray.
Figure 5: Characterization of the A2B3 nanoarray by AFM, using tapping mode in TAEMg 1 ×.
Figure 6: Raw and elaborated FRET-thermal curves obtained from the self-assembly of DNA-superstructures.

Similar content being viewed by others

References

  1. Seeman, N.C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  Google Scholar 

  2. Feldkamp, U. & Niemeyer, C.M. Rational design of DNA nanoarchitectures. Angew. Chem. Int. Ed. Engl. 45, 1856–1876 (2006).

    Article  CAS  Google Scholar 

  3. Lin, C., Liu, Y., Rinker, S. & Yan, H. DNA tile based self-assembly: building complex nanoarchitectures. Chemphyschem. 7, 1641–1647 (2006).

    Article  CAS  Google Scholar 

  4. Seeman, N.C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  Google Scholar 

  5. Seeman, N.C. An overview of structural DNA nanotechnology. Mol. Biotechnol. 37, 246–257 (2007).

    Article  CAS  Google Scholar 

  6. Winfree, E., Liu, F., Wenzler, L.A. & Seeman, N.C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  CAS  Google Scholar 

  7. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H. & LaBean, T.H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    Article  CAS  Google Scholar 

  8. He, Y. et al. Sequence symmetry as a tool for designing DNA nanostructures. Angew. Chem. Int. Ed. Engl. 44, 6694–6696 (2005).

    Article  CAS  Google Scholar 

  9. Liu, Y., Ke, Y. & Yan, H. Self-assembly of symmetric finite-size DNA nanoarrays. J. Am. Chem. Soc. 127, 17140–17141 (2005).

    Article  CAS  Google Scholar 

  10. Lund, K., Liu, Y., Lindsay, S. & Yan, H. Self-assembling a molecular pegboard. J. Am. Chem. Soc. 127, 17606–17607 (2005).

    Article  CAS  Google Scholar 

  11. Rothemund, P.W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  12. Malo, J. et al. Engineering a 2D protein-DNA crystal. Angew. Chem. Int. Ed. Engl. 44, 3057–3061 (2005).

    Article  CAS  Google Scholar 

  13. Shih, W.M., Quispe, J.D. & Joyce, G.F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

    Article  CAS  Google Scholar 

  14. Sacca, B., Meyer, R., Feldkamp, U., Schroeder, H. & Niemeyer, C.M. High-throughput, real-time monitoring of the self-assembly of DNA nanostructures by FRET spectroscopy. Angew. Chem. Int. Ed. Engl. 47, 2135–2137 (2008).

    Article  CAS  Google Scholar 

  15. Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 2, 55–75 (1948).

    Article  Google Scholar 

  16. Cantor, C.R., Warshaw, M.M. & Shapiro, H. Oligonucleotide interactions. 3. Circular dichroism studies of the conformation of deoxyoligonucleotides. Biopolymers 9, 1059–1077 (1970).

    Article  CAS  Google Scholar 

  17. Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).

    Article  CAS  Google Scholar 

  18. Fairclough, R.H. & Cantor, C.R. The use of singlet-singlet energy transfer to study macromolecular assemblies. Methods Enzymol. 48, 347–379 (1978).

    Article  CAS  Google Scholar 

  19. Lilley, D.M. & Wilson, T.J. Fluorescence resonance energy transfer as a structural tool for nucleic acids. Curr. Opin. Chem. Biol. 4, 507–517 (2000).

    Article  CAS  Google Scholar 

  20. Stryer, L. & Haugland, R.P. Energy transfer: a spectroscopic ruler. Proc. Natl. Acad. Sci. USA 58, 719–726 (1967).

    Article  CAS  Google Scholar 

  21. Clegg, R.M., Murchie, A.I. & Lilley, D.M. The solution structure of the four-way DNA junction at low-salt conditions: a fluorescence resonance energy transfer analysis. Biophys. J. 66, 99–109 (1994).

    Article  CAS  Google Scholar 

  22. Clegg, R.M. et al. Fluorescence resonance energy transfer analysis of the structure of the four-way DNA junction. Biochemistry 31, 4846–4856 (1992).

    Article  CAS  Google Scholar 

  23. Clegg, R.M., Murchie, A.I., Zechel, A. & Lilley, D.M. Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 90, 2994–2998 (1993).

    Article  CAS  Google Scholar 

  24. Ozaki, H. & McLaughlin, L.W. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer. Nucleic Acids Res. 20, 5205–5214 (1992).

    Article  CAS  Google Scholar 

  25. Eis, P.S. & Millar, D.P. Conformational distributions of a four-way DNA junction revealed by time-resolved fluorescence resonance energy transfer. Biochemistry 32, 13852–13860 (1993).

    Article  CAS  Google Scholar 

  26. Jares-Erijman, E.A. & Jovin, T.M. Determination of DNA helical handedness by fluorescence resonance energy transfer. J. Mol. Biol. 257, 597–617 (1996).

    Article  CAS  Google Scholar 

  27. Mergny, J.L. Fluorescence energy transfer as a probe for tetraplex formation: the i-motif. Biochemistry 38, 1573–1581 (1999).

    Article  CAS  Google Scholar 

  28. Muller, B.K., Reuter, A., Simmel, F.C. & Lamb, D.C. Single-pair FRET characterization of DNA tweezers. Nano Lett. 6, 2814–2820 (2006).

    Article  Google Scholar 

  29. Berney, C. & Danuser, G. FRET or no FRET: a quantitative comparison. Biophys. J. 84, 3992–4010 (2003).

    Article  CAS  Google Scholar 

  30. Sapsford, K.E., Berti, L. & Medintz, I.L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew. Chem. Int. Ed. Engl. 45, 4562–4589 (2006).

    Article  CAS  Google Scholar 

  31. De Cian, A. et al. Fluorescence-based melting assays for studying quadruplex ligands. Methods 42, 183–195 (2007).

    Article  CAS  Google Scholar 

  32. Vamosi, G. & Clegg, R.M. The helix-coil transition of DNA duplexes and hairpins observed by multiple fluorescence parameters. Biochemistry 37, 14300–14316 (1998).

    Article  CAS  Google Scholar 

  33. Mergny, J.L. & Lacroix, L. Analysis of thermal melting curves. Oligonucleotides 13, 515–537 (2003).

    Article  CAS  Google Scholar 

  34. Schulman, R. & Winfree, E. Synthesis of crystals with a programmable kinetic barrier to nucleation. Proc. Natl Acad. Sci. 104, 15236–15241 (2007).

    Article  CAS  Google Scholar 

  35. Greenfield, N.J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc. 1, 2527–2535 (2006).

    Article  CAS  Google Scholar 

  36. Cooper, A. & Johnson, C.M. Differential scanning calorimetry. Methods Mol. Biol. 22, 125–136 (1994).

    CAS  PubMed  Google Scholar 

  37. Privalov, P.L. & Potekhin, S.A. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 131, 4–51 (1986).

    Article  CAS  Google Scholar 

  38. SantaLucia, J. Jr., Allawi, H.T. & Seneviratne, P.A. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35, 3555–3562 (1996).

    Article  CAS  Google Scholar 

  39. Cavaluzzi, M.J. & Borer, P.N. Revised UV extinction coefficients for nucleoside-5′-monophosphates and unpaired DNA and RNA. Nucleic Acids Res. 32, e13 (2004).

    Article  Google Scholar 

  40. Warren, W.J. & Vella, G. Principles and methods for the analysis and purification of synthetic deoxyribonucleotides by high-performance liquid chromatography. Mol. Biotechnol. 4, 179–199 (1995).

    Article  CAS  Google Scholar 

  41. Moore, D. & Dowhan, D. Purification and concentration of DNA from aqueous solutions. Curr. Protoc. Mol. Biol. Chapter 2, Unit 2 1A (2002).

  42. Moore, D., Dowhan, D., Chory, J. & Ribaudo, R.K. Isolation and purification of large DNA restriction fragments from agarose gels. Curr. Protoc. Mol. Biol. Chapter 2, Unit 2.6 (2002).

  43. Bowen, E.J. & Sahu, J. The effect of temperature on fluorescence of solutions. J. Phys. Chem. 63, 4–7 (1959).

    Article  CAS  Google Scholar 

  44. Marras, S.A., Kramer, F.R. & Tyagi, S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. 30, e122 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

Our work has been financially supported by the Zentrum für Angewandte Chemische Genomik, a joint research initiative founded by the European Union and the Ministry of Innovation and Research of the state Northrhine Westfalia. We thank Dr Udo Feldkamp for the design of the DNA structures used in this work and Dr Hendrick Schoeder for his competent support in the setup of the thermocycler. C.M.N. thanks Max-Planck Society for financial support of a Max-Planck Fellow research group at the Max Planck Institute of Molecular Physiology, Dortmund.

Author information

Authors and Affiliations

Authors

Contributions

B.S. designed experiments, analyzed the data, prepared figures and wrote the manuscript; R.M. carried out experiments, analyzed the data and wrote the manuscript; C.M.N. designed and coordinated the research, analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Barbara Saccà or Christof M Niemeyer.

Supplementary information

Supplementary Data 1: Organization of the raw data. (PDF 60 kb)

Supplementary Data 2: Calculation of the FRET efficiency and related parameters for Van´t Hoff analysis. (PDF 73 kb)

41596_2009_BFnprot2008220_MOESM393_ESM.pdf

Supplementary Data 3: Arrhenius plot and determination of the thermodynamic parameters of the thermal process. (PDF 87 kb)

Supplementary Data 4: Temperature scan program of the real-time thermocycler. (PDF 64 kb)

41596_2009_BFnprot2008220_MOESM395_ESM.pdf

Supplementary Table 1: Raw data (fluorescence emission intensity of fluorescein vs. temperature) obtained from a FRET-thermal experiment performed on a 4x4 DNA-tile. (PDF 102 kb)

41596_2009_BFnprot2008220_MOESM396_ESM.pdf

Supplementary Table 2: Temperature dependence of the FRET efficiency E, assembled fraction θ and equilibrium constant Kass for the self-assembly of the single-tile. (PDF 149 kb)

41596_2009_BFnprot2008220_MOESM397_ESM.pdf

Supplementary Table 3: Values of the slope a and intercept b of the Arrhenius plot and thermodynamic parameters obtained from one single experiment of FRET-thermal self-assembly of the DNA-nanostructure. (PDF 70 kb)

Supplementary Fig. 1: Temperature program used for the assembly/disassembly of the DNA-superstructures. (PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saccà, B., Meyer, R. & Niemeyer, C. Temperature-dependent FRET spectroscopy for the high-throughput analysis of self-assembled DNA nanostructures in real time. Nat Protoc 4, 271–285 (2009). https://doi.org/10.1038/nprot.2008.220

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.220

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing