Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

E-clonal antibodies: selection of full-length IgG antibodies using bacterial periplasmic display

Abstract

Here we describe a protocol for the selection of full-length IgG antibodies from repertoires displayed on Escherichia coli. In the method described here, full-length heavy and light chains are assembled in the periplasm into aglycosylated IgGs that are fully functional for antigen binding. Expression of an inner membrane-tethered Fc-binding protein is used to capture the IgG molecules and anchor them to the cell. Following outer-membrane permeabilization, fluorescently labeled ligand-binding library clones are selected by multiple rounds of fluorescence-activated cell sorting. Selection of a comprehensive set of IgG clones can typically be obtained within 3–4 weeks, a timescale that is comparable with most prevalent antibody display technologies. The isolated antibodies are well expressed in bacteria and exhibit affinities per binding site in the nanomolar range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The E-clonal technology: libraries of full-length IgG antibodies expressed in the periplasm of E. coli are captured by an inner-membrane-tethered NlpA-ZZ fusion protein.
Figure 2: Map of plasmid pMAZ360-IgG for expression of soluble intact IgGs in the E. coli periplasm.
Figure 3: Representative flow cytometry data.

Similar content being viewed by others

References

  1. Imai, K. & Takaoka, A. Comparing antibody and small-molecule therapies for cancer. Nat. Rev. Cancer 6, 714–727 (2006).

    Article  CAS  Google Scholar 

  2. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  PubMed  Google Scholar 

  3. Li, J. et al. Human antibodies for immunotherapy development generated via a human B cell hybridoma technology. Proc. Natl. Acad. Sci. USA 103, 3557–3562 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Fishwild, D.M. et al. High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat. Biotechnol. 14, 845–851 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R. Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455 (1994).

    Article  CAS  Google Scholar 

  6. Boder, E.T. & Wittrup, K.D. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Daugherty, P.S., Olsen, M.J., Iverson, B.L. & Georgiou, G. Development of an optimized expression system for the screening of antibody libraries displayed on the Escherichia coli surface. Protein Eng. 12, 613–621 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Lipovsek, D. & Pluckthun, A. In-vitro protein evolution by ribosome display and mRNA display. J. Immunol. Methods 290, 51–67 (2004).

    Article  CAS  Google Scholar 

  9. Harvey, B.R. et al. Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proc. Natl. Acad. Sci. USA 101, 9193–9198 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Hoogenboom, H.R. Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23, 1105–1116 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Daugherty, P.S., Iverson, B.L. & Georgiou, G. Flow cytometric screening of cell-based libraries. J. Immunol. Methods 243, 211–227 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Hayhurst, A. & Georgiou, G. High-throughput antibody isolation. Curr. Opin. Chem. Biol. 5, 683–689 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Daugherty, P.S. Protein engineering with bacterial display. Curr. Opin. Struct. Biol. 17, 474–480 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Chao, G. et al. Isolating and engineering human antibodies using yeast surface display. Nat. Protoc. 1, 755–768 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Benhar, I. Design of synthetic antibody libraries. Expert Opin. Biol. Ther. 7, 763–779 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, W. & Georgiou, G. Cell-surface display of heterologous proteins: from high-throughput screening to environmental applications. Biotechnol. Bioeng. 79, 496–503 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Samuelson, P., Gunneriusson, E., Nygren, P.A. & Stahl, S. Display of proteins on bacteria. J. Biotechnol. 96, 129–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Francisco, J.A., Earhart, C.F. & Georgiou, G. Transport and anchoring of beta-lactamase to the external surface of Escherichia coli . Proc. Natl. Acad. Sci. USA 89, 2713–2717 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, G. et al. Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS). Nat. Biotechnol. 19, 537–542 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Daugherty, P.S., Chen, G., Olsen, M.J., Iverson, B.L. & Georgiou, G. Antibody affinity maturation using bacterial surface display. Protein Eng. 11, 825–832 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Harvey, B.R. et al. Engineering of recombinant antibody fragments to methamphetamine by anchored periplasmic expression. J. Immunol. Methods 308, 43–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Jeong, K.J., Seo, M.J., Iverson, B.L. & Georgiou, G. APEx 2-hybrid, a quantitative protein–protein interaction assay for antibody discovery and engineering. Proc. Natl. Acad. Sci. USA 104, 8247–8252 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Worn, A. & Pluckthun, A. Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. 305, 989–1010 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Mazor, Y., Blarcom, T.V., Mabry, R., Iverson, B.L. & Georgiou, G. Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli . Nat. Biotechnol. 25, 563–565 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Nilsson, B. et al. A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng. 1, 107–113 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Yu, F., Inouye, S. & Inouye, M. Lipoprotein-28, a cytoplasmic membrane lipoprotein from Escherichia coli. Cloning, DNA sequence, and expression of its gene. J. Biol. Chem. 261, 2284–2288 (1986).

    CAS  PubMed  Google Scholar 

  27. Yamaguchi, K., Yu, F. & Inouye, M. A single amino acid determinant of the membrane localization of lipoproteins in E. coli . Cell 53, 423–432 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Dane, K.Y., Chan, L.A., Rice, J.J. & Daugherty, P.S. Isolation of cell specific peptide ligands using fluorescent bacterial display libraries. J. Immunol. Methods 309, 120–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Akamatsu, Y., Pakabunto, K., Xu, Z., Zhang, Y. & Tsurushita, N. Whole IgG surface display on mammalian cells: Application to isolation of neutralizing chicken monoclonal anti-IL-12 antibodies. J. Immunol. Methods 327, 40–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Raju, T.S., Briggs, J.B., Borge, S.M. & Jones, A.J. Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10, 477–486 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Radaev, S. & Sun, P.D. Recognition of IgG by Fcgamma receptor. The role of Fc glycosylation and the binding of peptide inhibitors. J. Biol. Chem. 276, 16478–16483 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Jefferis, R. & Lund, J. Interaction sites on human IgG-Fc for FcgammaR: current models. Immunol. Lett. 82, 57–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Simmons, L.C. et al. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J. Immunol. Methods 263, 133–147 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Georgiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazor, Y., Van Blarcom, T., Iverson, B. et al. E-clonal antibodies: selection of full-length IgG antibodies using bacterial periplasmic display. Nat Protoc 3, 1766–1777 (2008). https://doi.org/10.1038/nprot.2008.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.176

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing