Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Displacement of protein-bound aptamers with small molecules screened by fluorescence polarization

Abstract

Small molecule inhibitors of proteins are invaluable tools in research and as starting points for drug development. However, their screening can be tedious, as most screening methods have to be tailored to the corresponding drug target. Here, we describe a detailed protocol for a modular and generally applicable assay for the identification of small organic compounds that displace an aptamer complexed to its target protein. The method relies on fluorescence-labeled aptamers and the increase of fluorescence polarization upon their binding to the target protein. The assay has high Z′-factors, making it compatible with high-throughput screening. It allows easy automation, making fluorescence readout the time-limiting step. As aptamers can be generated for virtually any protein target, the assay allows identification of small molecule inhibitors for targets or individual protein domains for which no functional screen is available. We provide the step-by-step protocol to screen for antagonists of the cytohesin class of small guanosine exchange factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the ideal scenario probed by the aptamer-displacement screening assay by fluorescence polarization.
Figure 2: Workflow for the setup and execution of a fluorescence-polarization screen.
Figure 3: Nine possible modes of action for the compound in an aptamer-displacement assay system.
Figure 4: Screening setup to use M69 in a robust aptamer-displacement assay to screen for inhibitors of cytohesin (Cyh)1-Sec7.
Figure 5: Representative example of the screening results of a box of 88 compounds with the structures of three hits indicated.

Similar content being viewed by others

References

  1. Cherfils, J. & Chardin, P. GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem. Sci. 24, 306–311 (1999).

    Article  CAS  Google Scholar 

  2. Jackson, C.L. & Casanova, J.E. Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol. 10 (suppl. 2): 60–67 (2000).

    Article  CAS  Google Scholar 

  3. Jackson, T.R., Kearns, B.G. & Theibert, A.B. Cytohesins and centaurins: mediators of PI 3-kinase-regulated ARF signaling. Trends Biochem. Sci. 25 (suppl. 10): 489–495 (2000).

    Article  CAS  Google Scholar 

  4. Rossman, K.L., Der, C.J. & Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6 (suppl. 2): 167–180 (2005).

    Article  CAS  Google Scholar 

  5. Hashimoto, S. et al. Requirement for ARF6 in breast cancer invasive activities. Proc. Natl. Acad. Sci. USA 101 (suppl. 17): 6647–6652 (2004).

    Article  CAS  Google Scholar 

  6. Gonzalez-Garcia, A. et al. RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 7 (suppl. 3): 219–226 (2005).

    Article  CAS  Google Scholar 

  7. Malliri, A. et al. Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 417 (suppl. 6891): 867–871 (2002).

    Article  CAS  Google Scholar 

  8. Donaldson, J.G., Finazzi, D. & Klausner, R.D. Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360 (suppl. 6402): 350–352 (1992).

    Article  CAS  Google Scholar 

  9. Helms, J.B. & Rothman, J.E. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360 (suppl. 640): 352–354 (1992).

    Article  CAS  Google Scholar 

  10. Peyroche, A. et al. Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol. Cell 3 (suppl. 3): 275–285 (1999).

    Article  CAS  Google Scholar 

  11. Morinaga, N., Tsai, S.-C., Moss, J. & Vaughan, M. Isolation of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP ribosylation factor (ARF) 1 and ARF3 that contains a Sec7-like domain. Proc. Natl. Acad. Sci. USA 93, 12856–12860 (1996).

    Article  CAS  Google Scholar 

  12. Renault, L., Guibert, B. & Cherfils, J. Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature 426 (suppl. 6966): 525–530 (2003).

    Article  CAS  Google Scholar 

  13. Mossessova, E., Corpina, R.A. & Goldberg, J. Crystal structure of ARF1*Sec7 complexed with Brefeldin A and its implications for the guanine nucleotide exchange mechanism. Mol. Cell 12 (suppl. 6): 1403–1411 (2003).

    Article  CAS  Google Scholar 

  14. Cherfils, J. & Melancon, P. On the action of Brefeldin A on Sec7-stimulated membrane-recruitment and GDP/GTP exchange of ARF proteins. Biochem. Soc. Trans. 33 (Part 4): 635–638 (2005).

    Article  CAS  Google Scholar 

  15. Brody, E.N. & Gold, L. Aptamers as therapeutic and diagnostic agents. J. Biotechnol. 74 (suppl. 1): 5–13 (2000).

    CAS  PubMed  Google Scholar 

  16. Famulok, M., Hartig, J.S. & Mayer, G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem. Rev. 107 (suppl. 9): 3715–3743 (2007).

    Article  CAS  Google Scholar 

  17. Mayer, G. et al. Controlling small guanine-nucleotide-exchange factor function through cytoplasmic RNA intramers. Proc. Natl. Acad. Sci. USA 98 (suppl. 9): 4961–4965 (2001).

    Article  CAS  Google Scholar 

  18. Theis, M.G. et al. Discriminatory aptamer reveals serum response element transcription regulated by cytohesin-2. Proc. Natl. Acad. Sci. USA 101 (suppl. 31): 11221–11226 (2004).

    Article  CAS  Google Scholar 

  19. Chardin, P. et al. A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384 (suppl. 6608): 481–484 (1996).

    Article  CAS  Google Scholar 

  20. Meacci, E. et al. Cytohesin-1, a cytosolic guanine nucleotide-exchange protein for ADP-ribosylation factor. Proc. Natl. Acad. Sci. USA 94 (suppl. 5): 1745–1748 (1997).

    Article  CAS  Google Scholar 

  21. Kolanus, W. et al. αLβ2 integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell 86 (suppl. 2): 233–242 (1996).

    Article  CAS  Google Scholar 

  22. Hafner, M. et al. Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance. Nature 444 (suppl. 7121): 941–944 (2006).

    Article  CAS  Google Scholar 

  23. Fuss, B., Becker, T., Zinke, I. & Hoch, M. The cytohesin Steppke is essential for insulin signalling in Drosophila. Nature 444 (suppl. 7121): 945–948 (2006).

    Article  CAS  Google Scholar 

  24. Blind, M., Kolanus, W. & Famulok, M. Cytoplasmic RNA modulators of an inside-out signal-transduction cascade. Proc. Natl. Acad. Sci. USA 96 (suppl. 7): 3606–3610 (1999).

    Article  CAS  Google Scholar 

  25. Shi, H., Hoffman, B.E. & Lis, J.T. RNA aptamers as effective protein antagonists in a multicellular organism. Proc. Natl. Acad. Sci. USA 96 (suppl. 18): 10033–10038 (1999).

    Article  CAS  Google Scholar 

  26. Hartig, J.S. et al. Protein-dependent ribozymes report molecular interactions in real time. Nat. Biotechnol. 20 (suppl. 7): 717–722 (2002).

    Article  CAS  Google Scholar 

  27. Yamazaki, S. et al. Aptamer displacement identifies alternative small-molecule target sites that escape viral resistance. Chem. Biol. 14 (suppl. 7): 804–812 (2007).

    Article  CAS  Google Scholar 

  28. Zhang, J.H., Chung, T.D. & Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4 (suppl. 2): 67–73 (1999).

    Article  CAS  Google Scholar 

  29. Knight, S.M. et al. A fluorescence polarization assay for the identification of inhibitors of the p53–DM2 protein–protein interaction. Anal. Biochem. 300 (suppl. 2): 230–236 (2002).

    Article  CAS  Google Scholar 

  30. Maurer, H.H. & Fritz, C.F. Toxicological detection of pholcodine and its metabolites in urine and hair using radio immunoassay, fluorescence polarisation immunoassay, enzyme immunoassay, and gas chromatography–mass spectrometry. Int. J. Legal Med. 104 (suppl. 1): 43–46 (1990).

    Article  CAS  Google Scholar 

  31. Wu, P., Brasseur, M. & Schindler, U. A high-throughput STAT binding assay using fluorescence polarization. Anal. Biochem. 249 (suppl. 1): 29–36 (1997).

    Article  CAS  Google Scholar 

  32. Frank, D.N., Ellington, A.E. & Pace, N.R. In vitro selection of RNase P RNA reveals optimized catalytic activity in a highly conserved structural domain. RNA 2 (suppl. 12): 1179–1188 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Murphy, R.F., Jorgensen, E.D. & Cantor, C.R. Kinetics of histone endocytosis in Chinese hamster ovary cells. A flow cytofluorometric analysis. J. Biol. Chem. 257 (suppl. 4): 1695–1701 (1982).

    CAS  PubMed  Google Scholar 

  34. Wu, T.P., Ruan, K.C. & Liu, W.Y. A fluorescence-labeling method for sequencing small RNA on polyacrylamide gel. Nucl. Acids Res. 24 (suppl. 17): 3472–3473 (1996).

    Article  CAS  Google Scholar 

  35. Huang, X. Fluorescence polarization competition assay: the range of resolvable inhibitor potency is limited by the affinity of the fluorescent ligand. J. Biomol. Screen. 8 (suppl. 1): 34–38 (2003).

    Article  CAS  Google Scholar 

  36. Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46 (suppl. 1–3): 3–26 (2001).

    Article  CAS  Google Scholar 

  37. Gopinath, S.C. Methods developed for SELEX. Anal. Bioanal. Chem. 387 (suppl. 1): 171–182 (2007).

    CAS  PubMed  Google Scholar 

  38. Klug, S.J. & Famulok, M. All you wanted to know about SELEX. Mol. Biol. Rep. 20 (suppl. 2): 97–107 (1994).

    Article  CAS  Google Scholar 

  39. Fitzwater, T. & Polisky, B. in Methods in Enzymology Vol. 267 (ed. Abelson, J.N.) 275–301 (Academic Press, San Diego, CA, 1996).

    Google Scholar 

  40. Moore, D.D. & Dowhan, D. in Current Protocols in Molecular Biology (ed. Ausubel, F.M. et al.) 2.1.1. (John Wiley & Sons Inc., New York, 2003).

    Google Scholar 

  41. Sengle, G. et al. Synthesis, incorporation efficiency, and stability of disulfide bridged functional groups at RNA 5′-ends. Bioorg. Med. Chem. 8 (suppl. 6): 1317–1329 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Famulok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafner, M., Vianini, E., Albertoni, B. et al. Displacement of protein-bound aptamers with small molecules screened by fluorescence polarization. Nat Protoc 3, 579–587 (2008). https://doi.org/10.1038/nprot.2008.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.15

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing