Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Atomic force microscopy of supported lipid bilayers

Abstract

Supported lipid bilayers (SLBs) are widely used in biophysical research to investigate the properties of biological membranes and offer exciting prospects in nanobiotechnology. Atomic force microscopy (AFM) has become a well-established technique for imaging SLBs at nanometer resolution. A unique feature of AFM is its ability to monitor dynamic processes, such as the interaction of bilayers with proteins and drugs. Here, we present protocols for preparing dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers supported on mica using small unilamellar vesicles and for imaging their nanoscale interaction with the antibiotic azithromycin using AFM. The entire protocol can be completed in 10 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic force microscopy (AFM) of supported lipid bilayers (SLBs).
Figure 2: Preparation of supported lipid bilayers (SLBs).
Figure 3: Real-time imaging of bilayer–drug interactions.
Figure 4: Real-time imaging of bilayer–peptide interactions.

Similar content being viewed by others

References

  1. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  Google Scholar 

  2. Jacobson, K. & Dietrich, C. Looking at lipid rafts? Trends Cell Biol. 9, 87–91 (1999).

    Article  CAS  Google Scholar 

  3. Hancock, J.F. Lipid rafts: contentious only from simplistic standpoints. Nat. Rev. Mol. Cell Biol. 7, 456–462 (2006).

    Article  CAS  Google Scholar 

  4. Jacobson, K., Mouritsen, O.G. & Anderson, R.G. Lipid rafts: at a crossroad between cell biology and physics. Nat. Cell Biol. 9, 7–14 (2007).

    Article  CAS  Google Scholar 

  5. Lucero, H.A. & Robbins, P.W. Lipid rafts-protein association and the regulation of protein activity. Arch. Biochem. Biophys. 426, 208–224 (2004).

    Article  CAS  Google Scholar 

  6. Lingwood, D. & Simons, K. Detergent resistance as a tool in membrane research. Nat. Protoc. 2, 2159–2165 (2007).

    Article  CAS  Google Scholar 

  7. Seydel, J.K. & Wiese, M. (eds.) Drug-membrane Interactions (Wiley-VCH, Weinheim, 2002).

    Book  Google Scholar 

  8. Seydel, J.K., Coats, E.A., Cordes, H.P. & Wiese, M. Drug membrane interaction and the importance for drug transport, distribution, accumulation, efficacy and resistance. Arch. Pharm. (Weinheim) 327, 601–610 (1994).

    Article  CAS  Google Scholar 

  9. Mouritsen, O.G. & Jørgensen, K. A new look at lipid-membrane structure in relation to drug research. Pharm. Res. 15, 1507–1519 (1998).

    Article  CAS  Google Scholar 

  10. Sackmann, E. Supported membranes: scientific and practical applications. Science 271, 43–48 (1996).

    Article  CAS  Google Scholar 

  11. Castellana, E.T. & Cremer, P.S. Solid supported lipid bilayers: from biophysical studies to sensor design. Surf. Sci. Rep. 61, 429–444 (2006).

    Article  CAS  Google Scholar 

  12. Schuster, B. & Sleytr, U.B. Biomimetic S-layer supported lipid membranes. Curr. Nanosci. 2, 143–152 (2006).

    Article  CAS  Google Scholar 

  13. Chan, Y.H.M. & Boxer, S.G. Model membrane systems and their applications. Curr. Opin. Chem. Biol. 11, 581–587 (2007).

    Article  CAS  Google Scholar 

  14. Kraft, M.L., Weber, P.K., Longo, M.L., Hutcheon, I.D. & Boxer, S.G. Phase separation of lipid membranes analyzed with high-resolution secondary ion mass spectrometry. Science 313, 1948–1951 (2006).

    Article  CAS  Google Scholar 

  15. Engel, A. & Müller, D.J. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7, 715–718 (2000).

    Article  CAS  Google Scholar 

  16. Müller, D.J. & Dufrêne, Y.F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3, 261–269 (2008).

    Article  Google Scholar 

  17. Lesniewska, E., Milhiet, P.E., Giocondi, M.C. & Le Grimellec, C. Atomic force microscope imaging of cells and membranes. Methods Cell Biol. 68, 51–65 (2002).

    Article  Google Scholar 

  18. Kasas, S. & Dietler, G. Probing nanomechanical properties from biomolecules to living cells. Pflugers Arch. 456, 13–27 (2008).

    Article  CAS  Google Scholar 

  19. Dufrêne, Y.F. & Lee, G.U. Advances in the characterization of supported lipid films with the atomic force microscope. Biochim. Biophys. Acta. 1509, 14–41 (2000).

    Article  Google Scholar 

  20. Janshoff, A. & Steinem, C. Scanning force microscopy of artificial membranes. Chembiochem. 2, 798–808 (2001).

    Article  CAS  Google Scholar 

  21. Czajkowsky, D.M. & Shao, Z. Supported lipid bilayers as effective substrates for atomic force microscopy. Methods Cell Biol. 68, 231–241 (2002).

    Article  CAS  Google Scholar 

  22. Seantier, B., Giocondi, M.C., Le Grimellec, C. & Milhiet, P.E. Probing supported model and native membranes using AFM. Curr. Opin. Coll. Interf. Sci. (in the press).

  23. Milhiet, P.E. et al. Spontaneous insertion and partitioning of alkaline phosphatase into model lipid rafts. EMBO Rep. 3, 485–490 (2002).

    Article  CAS  Google Scholar 

  24. Rinia, H.A. et al. Domain formation in phosphatidylcholine bilayers containing transmembrane peptides: specific effects of flanking residues. Biochemistry 41, 2814–2824 (2002).

    Article  CAS  Google Scholar 

  25. Montero, M.T., Pijoan, M., Merino-Montero, S., Vinuesa, T. & Hernandez-Borrell, J. Interfacial membrane effects of fluoroquinolones as revealed by a combination of fluorescence binding experiments and atomic force microscopy observations. Langmuir 22, 7574–7578 (2006).

    Article  CAS  Google Scholar 

  26. Giocondi, M.C. et al. Phase topology and growth of single domains in lipid bilayers. Langmuir 17, 1653–1659 (2001).

    Article  CAS  Google Scholar 

  27. Plant, A.L. Supported hybrid bilayer membranes as rugged cell membrane mimics. Langmuir 15, 5128–5135 (1999).

    Article  CAS  Google Scholar 

  28. Ulman, A. Ultrathin Organic Films (Academic Press, San Diego, 1991).

    Google Scholar 

  29. Horn, R.G. Direct measurement of the force between two lipid bilayers and observation of their fusion. Biochim. Biophys. Acta. 778, 224–228 (1984).

    Article  CAS  Google Scholar 

  30. Brian, A.A. & McConnell, H.M. Allogeneic stimulation of cytotoxic T cells by supported membranes. Proc. Natl. Acad. Sci. USA 81, 6159–6163 (1984).

    Article  CAS  Google Scholar 

  31. Jass, J., Tjärnhage, T. & Puu, G. From liposomes to supported, planar bilayer structures on hydrophilic and hydrophobic surfaces: an atomic force microscopy study. Biophys. J. 79, 3153–3163 (2000).

    Article  CAS  Google Scholar 

  32. Richter, R.P. & Brisson, A.R. Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry. Biophys. J. 88, 3422–3433 (2005).

    Article  CAS  Google Scholar 

  33. Müller, D.J. et al. Single-molecule studies of membrane proteins. Curr. Opin. Struct. Biol. 16, 489–495 (2006).

    Article  Google Scholar 

  34. Milhiet, P.E. et al. High-resolution AFM of membrane proteins directly incorporated at high density in planar lipid bilayer. Biophys. J. 91, 3268–3275 (2006).

    Article  CAS  Google Scholar 

  35. Berquand, A., Mingeot-Leclercq, M.P. & Dufrene, Y.F. Real-time imaging of drug-membrane interactions by atomic force microscopy. Biochim. Biophys. Acta. 1664, 198–205 (2004).

    Article  CAS  Google Scholar 

  36. El Kirat, K., Lins, L., Brasseur, R. & Dufrêne, Y.F. Fusogenic tilted peptides induce nanoscale holes in supported phosphatidylcholine bilayers. Langmuir 21, 3116–3121 (2005).

    Article  CAS  Google Scholar 

  37. El Kirat, K., Dufrêne, Y.F., Lins, L. & Brasseur, R. The SIV tilted peptide induces cylindrical reverse micelles in supported lipid bilayers. Biochemistry 45, 9336–9341 (2006).

    Article  CAS  Google Scholar 

  38. Müller, D.J. & Engel, A. Atomic force microscopy and spectroscopy of native membrane proteins. Nat. Protoc. 2, 2191–2197 (2007).

    Article  Google Scholar 

  39. Dufrêne, Y.F., Barger, W.R., Green, J.B.D. & Lee, G.U. Nanometer-scale surface properties of mixed phospholipid monolayers and bilayers. Langmuir 13, 4779–4784 (1997).

    Article  Google Scholar 

  40. Hennesthal, C. & Steinem, C. Pore-spanning lipid bilayers visualized by scanning force microscopy. J. Am. Chem. Soc. 122, 8085–8086 (2000).

    Article  CAS  Google Scholar 

  41. Hennesthal, C., Drexler, J. & Steinem, C. Membrane-suspended nanocompartments based on ordered pores. Chemphyschem. 10, 885–889 (2002).

    Article  Google Scholar 

  42. Goncalves, R.P. et al. Two-chamber AFM: probing membrane proteins separating two aqueous compartments. Nat. Methods 3, 1007–1012 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank their collaborators for sharing exciting experiments and discussions. This work was supported by the National Foundation for Scientific Research (FNRS), the Université catholique de Louvain (Fonds Spéciaux de Recherche), the Région wallonne, the Federal Office for Scientific, Technical and Cultural Affairs (Interuniversity Poles of Attraction Programme) and the Research Department of the Communauté française de Belgique (Concerted Research Action). Y.F.D. and M.D. are Research Associates of the FNRS, and R.B. is Research Director of the FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves F Dufrêne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mingeot-Leclercq, MP., Deleu, M., Brasseur, R. et al. Atomic force microscopy of supported lipid bilayers. Nat Protoc 3, 1654–1659 (2008). https://doi.org/10.1038/nprot.2008.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.149

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing