Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Peptide microarrays for high-throughput studies of Ser/Thr phosphatases

Abstract

Protein phosphorylation and dephosphorylation play an important role in regulation of intracellular signal transduction pathways in the biological system. A key step in the biological characterization of phosphatases and their use as drug targets is the identification of their cellular partners and suitable substrates for potential inhibitor development. Herein we describe a microarray-based protocol to map the substrate specificity of protein Ser/Thr phosphatases. This protocol uses Pro-Q dye to sensitively and quantitatively detect the amount of dephosphorylation that occurs from many putative peptide substrates in parallel, and therefore could be used to generate the so-called peptide substrate fingerprints as well as detailed kinetic information of a target phosphatase. Excluding the synthesis of the peptide substrates, the whole protocol takes a total of 11 h to complete and in future can be readily extended to the study of other classes of phosphatases, i.e., protein tyrosine phosphatases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Work flow of a phosphopeptide microarray targeting Ser/Thr phosphatases.
Figure 2: Schematic for the combinatorial synthesis of the phosphorylated peptide library.
Figure 3: LC-MS characterization of a representative peptide.
Figure 4: Determination of TMR-biotin immobilization efficiency.
Figure 5: Determination of peptide immobilization efficiency and Pro-Q detection linear range.
Figure 6: Enzyme time-dependent assay with different peptide substrate concentrations.

Similar content being viewed by others

References

  1. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  Google Scholar 

  2. Zhang, Z.Y. Protein-tyrosine phosphatases: biological function, structural characteristics, and mechanism of catalysis. CRC Crit. Rev. Biochem. Mol. Biol. 33, 1–52 (1998).

    Article  Google Scholar 

  3. Johnson, T.O., Ermolieff, J. & Jirousek, M.R. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat. Rev. Drug Disc. 1, 696–709 (2002).

    Article  CAS  Google Scholar 

  4. Bialy, L. & Waldmann, H. Inhibitors of protein tyrosine phosphatases: next-generation drugs? Angew. Chem. Int. Ed. 44, 3814–3839 (2005).

    Article  CAS  Google Scholar 

  5. Pawson, T. & Scott, J.D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Schutkowski, M. et al. High-content peptide microarrays for deciphering kinase specificity and biology. Angew. Chem. Int. Ed. 43, 2671–2674 (2004).

    Article  CAS  Google Scholar 

  7. Garaud, M. & Pei, D. Substrate profiling of protein tyrosine phosphatase PTP1B by screening a combinatorial peptide library. J. Am. Chem. Soc. 129, 5366–5367 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Cho, J. et al. Substrate specificities of catalytic fragments of protein-tyrosine phosphatases (Hptp-Beta, Lar, and Cd45) toward phosphotyrosylpeptide substrates and thiophosphotyrosylated peptides as inhibitors. Protein Sci. 2, 977–984 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, Z.-Y., Maclean, D., McNamara, D.J., Sawyer, T.K. & Dixon, J.E. Protein tyrosine phosphatase substrate specificity: size and phosphotyrosine positioning requirements in peptide substrates. Biochemistry 33, 2285–2290 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Pellegrini, M.C. et al. Mapping the subsite preferences of protein tyrosine phosphatase PTP-1B using combinatorial chemistry approaches. Biochemistry 37, 15598–15606 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Walchli, S., Espanel, X., Harrenga, A., Rossi, M., Cesareni, G. & van Huijsduiinen, R.H. Probing protein-tyrosine phosphatase substrate specificity using a phosphotyrosine-containing phage library. J. Biol. Chem. 279, 311–318 (2004).

    Article  PubMed  Google Scholar 

  12. Vetter, S.W., Keng, Y.-F., Lawrence, D.S. & Zhang, Z.-Y. Assessment of protein-tyrosine phosphatase 1B substrate specificity using 'inverse alanine scanning'. J. Biol. Chem. 275, 2265–2268 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Tomizaki, K.Y., Usui, K. & Mihara, H. Protein-detecting microarrays: current accomplishments and requirements. ChemBioChem 6, 782–799 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Reineke, U., Volkmer-Engert, R. & Schneider-Mergener, J. Applications of peptide arrays prepared by the SPOT-technology. Curr. Opin. Biotechnol. 12, 59–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Houseman, B.T., Huh, J.H., Kron, S.J. & Mrksich, M. Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 20, 270–274 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Falsey, J.R., Renil, M., Park, S., Li, S. & Lam, K.S. Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconj. Chem. 12, 346–353 (2001).

    Article  CAS  Google Scholar 

  17. Lesaicherre, M.L., Uttamchandani, M., Chen, G.Y. & Yao, S.Q. Antibody-based fluorescence detection of kinase activity on a peptide array. Bioorg. Med. Chem. Lett. 12, 2085–2088 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Salisbury, C.M., Maly, D.J. & Ellman, J.A. Peptide microarrays for the determination of protease substrate specificity. J. Am. Chem. Soc. 124, 14868–14870 (2002).

    Article  CAS  Google Scholar 

  19. Köhn, M. et al. A microarray strategy for mapping the substrate specificity of protein tyrosine phosphatase. Angew. Chem. Int. Ed. 46, 7700–7703 (2007).

    Article  Google Scholar 

  20. Sun, H., Lu, C.H.S., Uttamchandani, M., Xia, Y., Liou, Y.-C. & Yao, S.Q. Peptide microarray for high-throughput determination of phosphatase specificity and biology. Angew. Chem. Int. Ed. 47, 1698–1702 (2008).

    Article  CAS  Google Scholar 

  21. Martin, K., Steinberg, T.H., Cooley, L.A., Gee, K.R., Beechem, J.M. & Patton, W.F. Quantitative analysis of protein phosphorylation status and protein kinase activity on microarrays using a novel fluorescent phosphorylation sensor dye. Proteomics 3, 1244–1255 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Lu, K.P., Liou, Y.C. & Zhou, X.Z. Pinning down proline-directed phosphorylation signaling. Trends Cell Biol. 12, 164–172 (2002).

    Article  CAS  Google Scholar 

  23. Chattopadhaya, S., Tan, L.P. & Yao, S.Q. Strategies for site-specific protein biotinylation using in vitro, in vivo and cell-free systems: toward functional protein arrays. Nat. Protoc. 1, 2386–2398 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, W.L., Li, J., Uttamchandani, M., Sun, H. & Yao, S.Q. Inhibitor fingerprinting of metalloproteases using microplate and microarray platforms—an enabling technology in catalomics. Nat. Protoc. 2, 2126–2138 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Uttamchandani, M., Lee, W.L., Wang, J. & Yao, S.Q. Quantitative inhibitor fingerprinting of metalloproteases using small molecule microarrays. J. Am. Chem. Soc. 129, 13110–13117 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao Q Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Lu, C., Shi, H. et al. Peptide microarrays for high-throughput studies of Ser/Thr phosphatases. Nat Protoc 3, 1485–1493 (2008). https://doi.org/10.1038/nprot.2008.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.139

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing