Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Live visualization of protein synthesis in axonal growth cones by microinjection of photoconvertible Kaede into Xenopus embryos

Abstract

Photoconvertible fluorescent proteins, such as Kaede, can be switched irreversibly from their native color to a new one. This property can be exploited to visualize de novo mRNA translation, because newly synthesized proteins can be distinguished from preexisting ones by their color. In this protocol, Kaede cDNA linked to the 3′ untranslated region (UTR) of β-actin is delivered into cells fated to become the retina by injection into Xenopus blastomeres. Brief exposure (6–10 s) to UV light (350–410 nm) of Kaede-positive retinal axons/growth cones efficiently converts Kaede from its native green fluorescence to red. The reappearance of the green signal reports the synthesis of new Kaede protein. This approach can be used to investigate the spatiotemporal control of translation of specific mRNAs in response to external stimuli and to test the efficiency of full-length versus mutant UTRs. The 3-d protocol can be adapted for broad use with other photoactivatable fluorescent proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic diagram showing the experimental design of the protocol.
Figure 2: Images of micropipettes and Xenopus embryos.
Figure 3: Typical results of netrin-1-induced synthesis of Kaede driven by β-actin 3′UTR.

Similar content being viewed by others

References

  1. Piper, M. & Holt, C. RNA translation in axons. Annu. Rev. Cell. Dev. Biol. 20, 505–523 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Steward, O. & Schuman, E.M. Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40, 347–359 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Wilkie, G.S., Dickson, K.S. & Gray, N.K. Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem. Sci. 28, 182–188 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Aakalu, G., Smith, W.B., Nguyen, N., Jiang, C. & Schuman, E.M. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30, 489–502 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Aronov, S., Aranda, G., Behar, L. & Ginzburg, I. Visualization of translated tau protein in the axons of neuronal P19 cells and characterization of tau RNP granules. J. Cell Sci. 115, 3817–3827 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Brittis, P.A., Lu, Q. & Flanagan, J.G. Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110, 223–235 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Leung, K.M. et al. Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat. Neurosci. 9, 1247–1256 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, K.Y. et al. Local translation of RhoA regulates growth cone collapse. Nature 436, 1020–1024 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kislauskis, E.H., Li, Z., Singer, R.H. & Taneja, K.L. Isoform-specific 3′-untranslated sequences sort alpha-cardiac and beta-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J. Cell Biol. 123, 165–172 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Kislauskis, E.H., Zhu, X. & Singer, R.H. Sequences responsible for intracellular localization of beta-actin messenger RNA also affect cell phenotype. J. Cell Biol. 127, 441–451 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Bassell, G.J. et al. Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J. Neurosci. 18, 251–265 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huttelmaier, S. et al. Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512–515 (2005).

    Article  PubMed  Google Scholar 

  13. Job, C. & Eberwine, J. Identification of sites for exponential translation in living dendrites. Proc. Natl. Acad. Sci. USA 98, 13037–13042 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Terskikh, A. et al. 'Fluorescent timer': protein that changes color with time. Science 290, 1585–1588 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 12651–12656 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lukyanov, K.A., Chudakov, D.M., Lukyanov, S. & Verkhusha, V.V. Innovation: photoactivatable fluorescent proteins. Nat. Rev. Mol. Cell Biol. 6, 885–891 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Raab-Graham, K.F., Haddick, P.C., Jan, Y.N. & Jan, L.Y. Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science 314, 144–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Hatta, K., Tsujii, H. & Omura, T. Cell tracking using a photoconvertible fluorescent protein. Nat. Protoc. 1, 960–967 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Bernas, T., Zarebski, M., Dobrucki, J.W. & Cook, P.R. Minimizing photobleaching during confocal microscopy of fluorescent probes bound to chromatin: role of anoxia and photon flux. J. Microsc. 215, 281–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Song, L., Varma, C.A., Verhoeven, J.W. & Tanke, H.J. Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophys. J. 70, 2959–2968 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song, L., van Gijlswijk, R.P., Young, I.T. & Tanke, H.J. Influence of fluorochrome labeling density on the photobleaching kinetics of fluorescein in microscopy. Cytometry 27, 213–223 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Dixit, R. & Cyr, R. Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J. 36, 280–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Mizuno, H. et al. Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol. Cell 12, 1051–1058 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Dittrich, P.S., Schafer, S.P. & Schwille, P. Characterization of the photoconversion on reaction of the fluorescent protein Kaede on the single-molecule level. Biophys. J. 89, 3446–3455 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sato, T., Takahoko, M. & Okamoto, H. HuC:Kaede, a useful tool to label neural morphologies in networks in vivo. Genesis 44, 136–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Stark, D.A. & Kulesa, P.M. An in vivo comparison of photoactivatable fluorescent proteins in an avian embryo model. Dev. Dyn. 236, 1583–1594 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Wachter, R.M. Chromogenic cross-link formation in green fluorescent protein. Acc. Chem. Res. 40, 120–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Nienhaus, G.U. et al. Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Photochem Photobiol 82, 351–358 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Gurskaya, N.G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Sahly, I., Erez, H., Khoutorsky, A., Shapira, E. & Spira, M.E. Effective expression of the green fluorescent fusion proteins in cultured Aplysia neurons. J. Neurosci. Methods 126, 111–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Vize, P.D., Melton, D.A., Hemmati-Brivanlou, A. & Harland, R.M. Assays for gene function in developing Xenopus embryos. Methods Cell Biol. 36, 367–387 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Etkin, L.D. & Pearman, B. Distribution, expression and germ line transmission of exogenous DNA sequences following microinjection into Xenopus laevis eggs. Development 99, 15–23 (1987).

    CAS  PubMed  Google Scholar 

  34. Harland, R. & Misher, L. Stability of RNA in developing Xenopus embryos and identification of a destabilizing sequence in TFIIIA messenger RNA. Development 102, 837–852 (1988).

    CAS  PubMed  Google Scholar 

  35. Holt, C.E., Garlick, N. & Cornel, E. Lipofection of cDNAs in the embryonic vertebrate central nervous system. Neuron 4, 203 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Ohnuma, S., Mann, F., Boy, S., Perron, M. & Harris, W.A. Lipofection strategy for the study of Xenopus retinal development. Methods 28, 411–419 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Nieuwkoop, P.D. & Faber, J. The Normal Table of Xenopus laevis (Daudin) (Garland Publishing Inc., New York, 1994).

    Google Scholar 

  38. Sive, H.L., Grainger, R.M. & Harland, R. Early Development of Xenopus Laevis: a Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1998).

    Google Scholar 

  39. Shirasaki, R., Mirzayan, C., Tessier-Lavigne, M. & Murakami, F. Guidance of circumferentially growing axons by netrin-dependent and -independent floor plate chemotropism in the vertebrate brain. Neuron 17, 1079–1088 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Huang, S. & Moody, S.A. The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones. J. Neurosci. 13, 3193–3210 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Spira for suggesting the use of Kaede. We also thank M. Agathocleous, J. Falk, L. Leung, A. Lin and F. van Horck for critical reading of the manuscript. This work was supported by a Croucher Scholarship (K.-M.L.) and a Wellcome Trust Programme Grant (C.E.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E Holt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, KM., Holt, C. Live visualization of protein synthesis in axonal growth cones by microinjection of photoconvertible Kaede into Xenopus embryos. Nat Protoc 3, 1318–1327 (2008). https://doi.org/10.1038/nprot.2008.113

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.113

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing