Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting

Abstract

Hydroxyl radical (·OH) footprinting provides comprehensive site-specific quantitative information about the structural changes associated with macromolecular folding, interactions and ligand binding. 'Fast Fenton' footprinting is a laboratory-based method for time-resolved ·OH footprinting capable of millisecond time resolution readily applicable to DNA and RNA. This protocol utilizes inexpensive chemical reagents (H2O2, Fe(NH4)2(SO4)2, EDTA, thiourea or ethanol) and widely available quench-flow mixers to reveal transient, often short-lived, intermediate states of complex biochemical processes. We describe a protocol developed to study RNA folding that can be readily tailored to particular applications. Once familiar with quench-flow mixer operation and its calibration, nucleic acid labeling and the conduct of a dose–response experiment, a single kinetic experiment of 30 time points takes about 1 h to perform. Sample processing and separation of the ·OH reaction products takes several hours. Data analysis can take 45 min to several weeks depending on the depth of analysis conducted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General diagram of a Fast Fenton footprinting experiment.
Figure 2: Schematic representation of 3′-end labeling.
Figure 3: Schematic representation of the three syringe quench-flow mixer experimental setup used to conduct a dose–response experiment to determine the appropriate Fenton reagent concentrations and reaction time.
Figure 4: Analysis of a dose–response experiment.
Figure 5: Schematic representation of a fast Fenton footprinting experiment conducted in the quench-flow mixer.
Figure 6: Monitoring structural changes upon RNA folding.
Figure 7: Generation and analysis of time-progress curves from a fast Fenton autoradiogram.
Figure 8: Manual clustering of the time-progress curves shown in Figure 7.
Figure 9: An example of an analysis of a set of Fast Fenton time-progress curves.

Similar content being viewed by others

References

  1. Galas, D.J. & Schmitz, A. DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5, 3157–3170 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Latham, J.A. & Cech, T.R. Defining the inside and outside of a catalytic RNA molecule. Science 245, 276–282 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Petri, V. & Brenowitz, M. Quantitative nucleic acids footprinting: thermodynamic and kinetic approaches. Curr. Opin. Biotechnol. 8, 36–44 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Buxton, G.V., Greenstock, C.L., Helman, W.P. & Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886 (1988).

    Article  CAS  Google Scholar 

  5. Tullius, T.D. & Dombroski, B.A. Hydroxyl radical 'footprinting': high-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Proc. Natl. Acad. Sci. USA 83, 5469–5473 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hsieh, M. & Brenowitz, M. Quantitative kinetics footprinting of protein-DNA association reactions. Methods Enzymol. 274, 478–492 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Fenton, H.J.H. The oxidation of tartaric acid in presence of iron. J. Chem. Soc. 65, 899–910 (1894).

    Article  CAS  Google Scholar 

  8. Shcherbakova, I., Mitra, S., Beer, R.H. & Brenowitz, M. Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res. 34, e48 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shcherbakova, I., Mitra, S., Beer, R.H. & Brenowitz, M. Following molecular transitions with single residue spatial and millisecond time resolution. in Methods in Cell Biology, Vol. 84 (eds. Correia, J.J. & Detrich, H.W.) 589–615 (Elsevier/Academic Press, New York, 2008).

    Google Scholar 

  10. Tullius, T.D. & Dombroski, B.A. Iron(II) EDTA used to measure the helical twist along any DNA molecule. Science 230, 679–681 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Sclavi, B., Sullivan, M., Chance, M.R., Brenowitz, M. & Woodson, S.A. RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting. Science 279, 1940–1943 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Ralston, C.Y. et al. Time-resolved synchrotron X-ray footprinting and its application to RNA folding. Methods Enzymol. 317, 353–368 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Brenowitz, M., Chance, M.R., Dhavan, G. & Takamoto, K. Probing the structural dynamics of nucleic acids by quantitative time-resolved and equilibrium hydroxyl radical 'footprinting'. Curr. Opin. Struct. Biol. 12, 648–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Aye, T.T., Low, T.Y. & Sze, S.K. Nanosecond laser-induced photochemical oxidation method for protein surface mapping with mass spectrometry. Anal. Chem. 77, 5814–5822 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Hambly, D.M. & Gross, M.L. Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J. Am. Soc. Mass Spectrom. 16, 2057–2063 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Heyduk, T., Heyduk, E., Severinov, K., Tang, H. & Ebright, R.H. Determinants of RNA polymerase alpha subunit for interaction with beta, beta′, and sigma subunits: hydroxyl-radical protein footprinting. Proc. Natl. Acad. Sci. USA 93, 10162–10166 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharp, J.S., Becker, J.M. & Hettich, R.L. Protein surface mapping by chemical oxidation: structural analysis by mass spectrometry. Anal. Biochem. 313, 216–225 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Takamoto, K. & Chance, M.R. Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. Annu. Rev. Biophys. Biomol. Struct. 35, 251–276 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Sclavi, B. et al. Real-time characterization of intermediates in the pathway to open complex formation by Escherichia coli RNA polymerase at the T7A1 promoter. Proc. Natl. Acad. Sci. USA 102, 4706–4711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zaug, A.J., Grosshans, C.A. & Cech, T.R. Sequence-specific endoribonuclease activity of the Tetrahymena ribozyme: enhanced cleavage of certain oligonucleotide substrates that form mismatched ribozyme-substrate complexes. Biochemistry 27, 8924–8931 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Huang, Z. & Szostak, J.W. A simple method for 3′-labeling of RNA. Nucleic Acids Res. 24, 4360–4361 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shcherbakova, I., Gupta, S., Chance, M.R. & Brenowitz, M. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme. J. Mol. Biol. 342, 1431–1442 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Henegariu, O., Bray-Ward, P. & Ward, D.C. Custom fluorescent-nucleotide synthesis as an alternative method for nucleic acid labeling. Nat. Biotechnol. 18, 345–348 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Nguyenle, T., Laurberg, M., Brenowitz, M. & Noller, H.F. Following the dynamics of changes in solvent accessibility of 16 S and 23 S rRNA during ribosomal subunit association using synchrotron-generated hydroxyl radicals. J. Mol. Biol. 359, 1235–1248 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Adilakshmi, T., Ramaswamy, P. & Woodson, S.A. Protein-independent folding pathway of the 16S rRNA 5′ domain. J. Mol. Biol. 351, 508–519 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Brenowitz, M., Senear, D.F., Shea, M.A. & Ackers, G.K. Quantitative DNase footprint titration: a method for studying protein–DNA interactions. Methods Enzymol. 130, 132–181 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Sclavi, B., Woodson, S., Sullivan, M., Chance, M. & Brenowitz, M. Following the folding of RNA with time-resolved synchrotron X-ray footprinting. Methods Enzymol. 295, 379–402 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Das, R., Laederach, A., Pearlman, S.M., Herschlag, D. & Altman, R.B. SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11, 344–354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laederach, A., Shcherbakova, I., Liang, M.P., Brenowitz, M. & Altman, R.B. Local kinetic measures of macromolecular structure reveal partitioning among multiple parallel pathways from the earliest steps in the folding of a large RNA molecule. J. Mol. Biol. 358, 1179–1190 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sharp, J.S., Becker, J.M. & Hettich, R.L. Analysis of protein solvent accessible surfaces by photochemical oxidation and mass spectrometry. Anal. Chem. 76, 672–683 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Tijerina, P., Mohr, S. & Russell, R. DMS footprinting of structured RNAs and RNA–protein complexes. Nat. Protoc. 2, 2608–2623 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sclavi, B., Woodson, S., Sullivan, M., Chance, M.R. & Brenowitz, M. Time-resolved synchrotron X-ray 'footprinting', a new approach to the study of nucleic acid structure and function: application to protein–DNA interactions and RNA folding. J. Mol. Biol. 266, 144–159 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Laederach, A., Shcherbakova, I., Jonikas, M.A., Altman, R.B. & Brenowitz, M. Distinct contribution of electrostatics, initial conformational ensemble, and macromolecular stability in RNA folding. Proc. Natl. Acad. Sci. USA 104, 7045–7050 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The writing of this article was supported by National Institutes of Health grant PO1–GM066275 from the Institute of General Medical Sciences. We thank Jörg Schlatterer, Somdeb Mitra, Alain Laederach, Rick Russell and Yaqi Wan for critically reading the manuscript and confirming the details of the presented protocol.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Inna Shcherbakova or Michael Brenowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcherbakova, I., Brenowitz, M. Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting. Nat Protoc 3, 288–302 (2008). https://doi.org/10.1038/nprot.2007.533

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.533

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing