Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The regular and light–dark Suok tests of anxiety and sensorimotor integration: utility for behavioral characterization in laboratory rodents

Abstract

Animal behavioral models are crucial for neurobiological research, allowing for the thorough investigation of brain pathogenesis to be performed. In both animals and humans, anxiety has long been linked to vestibular disorders. However, although there are many tests of anxiety and vestibular deficits, there are few protocols that address the interplay between these two domains. The Suok test and its light–dark modification presented here appear to be suitable for testing this pathogenetic link in laboratory rodents. This protocol adds a new dimension to previously used tests by assessing animal anxiety and balancing simultaneously, resulting in efficient, high-throughput screens for testing psychotropic drugs, phenotyping genetically modified animals, and modeling clusters of human disorders related to stress/anxiety and balancing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mouse Suok test.
Figure 2: The rat Suok test.
Figure 3: Selected examples of pharmacogenic behavioral responses that may be evoked in the rodent Suok tests by various psychotropic drugs.

Similar content being viewed by others

References

  1. Crawley, J.N. What's Wrong With My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice (Wiley-Liss, New York, 2000).

    Google Scholar 

  2. Tecott, L.H. & Nestler, E.J. Neurobehavioral assessment in the information age. Nat. Neurosci. 7, 462–466 (2004).

    Article  CAS  Google Scholar 

  3. Crabbe, J.C. & Morris, R.G. Festina lente: late-night thoughts on high-throughput screening of mouse behavior. Nat. Neurosci. 7, 1175–1179 (2004).

    Article  CAS  Google Scholar 

  4. Wotjak, C.T. Of mice and men. Potentials and caveats of behavioral experiments with mice. B.I.F. Futura 19, 158–169 (2004).

    Google Scholar 

  5. Kalueff, A.V., Wheaton, M. & Murphy, D.L. What's wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav. Brain Res. 179, 1–18 (2007).

    Article  CAS  Google Scholar 

  6. Kalueff, A., Ishikawa, K. & Griffith, A. Anxiety and vestibular disorders: linking behavioral phenotypes in men and mice. Behav. Brain Res. 186, 1–11 (2007).

    Article  Google Scholar 

  7. Balaban, C.D. & Thayer, J.F. Neurological bases for balance-anxiety links. J. Anxiety Disord. 15, 53–79 (2001).

    Article  CAS  Google Scholar 

  8. Balaban, C.D. Neural substrates linking balance control and anxiety. Physiol. Behav. 77, 469–475 (2002).

    Article  CAS  Google Scholar 

  9. Furman, J.M., Balaban, C.D. & Jacob, R.G. Interface between vestibular dysfunction and anxiety: more than just psychogenicity. Otol. Neurotol. 22, 426–427 (2001).

    Article  CAS  Google Scholar 

  10. Balaban, C.D. & Jacob, R.G. Background and history of the interface between anxiety and vertigo. J. Anxiety Disord. 15, 27–51 (2001).

    Article  CAS  Google Scholar 

  11. Le Marec, N. & Lalonde, R. Sensorimotor learning and retention during equilibrium tests in Purkinje cell degeneration mutant mice. Brain Res. 768, 310–316 (1997).

    Article  CAS  Google Scholar 

  12. Lepicard, E.M. et al. Balance control and posture differences in the anxious BALB/cByJ mice compared to the non anxious C57BL/6J mice. Behav. Brain Res. 117, 185–195 (2000).

    Article  CAS  Google Scholar 

  13. Lepicard, E.M., Joubert, C., Hagneau, I., Perez-Diaz, F. & Chapouthier, G. Differences in anxiety-related behavior and response to diazepam in BALB/cByJ and C57BL/6J strains of mice. Pharmacol. Biochem. Behav. 67, 739–748 (2000).

    Article  CAS  Google Scholar 

  14. Lepicard, E.M. et al. Posture and balance responses to a sensory challenge are related to anxiety in mice. Psychiatry Res. 118, 273–284 (2003).

    Article  Google Scholar 

  15. Lepicard, E.M. et al. Spatio-temporal analysis of locomotion in BALB/cByJ and C57BL/6J mice in different environmental conditions. Behav. Brain Res. 167, 365–372 (2006).

    Article  Google Scholar 

  16. Venault, P. et al. Balance control and posture in anxious mice improved by SSRI treatment. Neuroreport 12, 3091–3094 (2001).

    Article  CAS  Google Scholar 

  17. Kalueff, A.V., Minasyan, A. & Tuohimaa, P. Behavioural characterization in rats using the elevated alley Suok test. Behav. Brain Res. 165, 52–57 (2005).

    Article  Google Scholar 

  18. Kalueff, A.V. & Tuohimaa, P. The Suok (“ropewalking”) murine test of anxiety. Brain Res. Brain Res. Protoc. 14, 87–99 (2005).

    Article  Google Scholar 

  19. Kalueff, A., Minasyan, A., Keisala, T. & Tuohimaa, P. A new behavioral paradigm for anxiety research in rodents-the Suok “ropewalking” test. In Trends in Brain Research (ed. Chen, F.J.) 89–116 (Nova Science, New York, 2006).

    Google Scholar 

  20. Lalonde, R., Le Pêcheur, M., Strazielle, C. & London, J. Exploratory activity and motor coordination in wild-type SOD1/SOD1 transgenic mice. Brain Res. Bull. 66, 155–162 (2005).

    Article  CAS  Google Scholar 

  21. Stanley, J.L. et al. The mouse beam walking assay offers improved sensitivity over the mouse rotarod in determining motor coordination deficits induced by benzodiazepines. J. Psychopharmacol. 19, 221–227 (2005).

    Article  CAS  Google Scholar 

  22. Paffenholz, R. et al. Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev. 18, 486–491 (2004).

    Article  CAS  Google Scholar 

  23. Lalonde, R., Botez, M.I., Joyal, C.C. & Caumartin, M. Motor abnormalities in lurcher mutant mice. Physiol. Behav. 51, 523–525 (1992).

    Article  CAS  Google Scholar 

  24. Montgomery, K.C. The relation between fear induced by novel stimulation and exploratory behavior. J. Comp. Physiol. Psychol. 48, 254–260 (1955).

    Article  CAS  Google Scholar 

  25. Montgomery, K.C. & Monkman, J.A. The relation between fear and exploratory behavior. J. Comp. Physiol. Psychol. 48, 132–136 (1955).

    Article  CAS  Google Scholar 

  26. Crawley, J.N. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 835, 18–26 (1999).

    Article  CAS  Google Scholar 

  27. Walf, A.A. & Frye, C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2, 322–328 (2007).

    Article  CAS  Google Scholar 

  28. Lalonde, R., Dumont, M., Paly, E., London, J. & Strazielle, C. Characterization of hemizygous SOD1/wild-type transgenic mice with the SHIRPA primary screen and tests of sensorimotor function and anxiety. Brain Res. Bull. 64, 251–258 (2004).

    Article  CAS  Google Scholar 

  29. Crabbe, J.C. et al. Genotypic differences in ethanol sensitivity in two tests of motor incoordination. J. Appl. Physiol. 95, 1338–1351 (2003).

    Article  CAS  Google Scholar 

  30. Kalueff, A.V., Keisala, T., Minasyan, A. & Tuohimaa, P. Influence of paternal genotypes on F1 behaviors: lessons from several mouse strains. Behav. Brain Res. (2006).

  31. Wolfer, D.P. et al. Laboratory animal welfare: cage enrichment and mouse behaviour. Nature 432, 821–822 (2004).

    Article  CAS  Google Scholar 

  32. Wurbel, H. Publications should include an animal-welfare section. Nature 446, 257 (2007).

    Article  Google Scholar 

  33. Kalueff, A.V. & Murphy, D.L. The importance of cognitive phenotypes for experimental modeling of animal anxiety and depression. Neural Plast. 2007, 1–7 (2007).

    Google Scholar 

  34. Kalueff, A.V., Keisala, T., Minasyan, A. & Tuohimaa, P. Pharmacological modulation of anxiety-related behaviors in the murine Suok test. Brain Res. Bull. 74, 45–50 (2007).

    Article  CAS  Google Scholar 

  35. Deacon, R.M. Housing, husbandry and handling of rodents for behavioral experiments. Nat. Protoc. 1, 936–946 (2006).

    Article  Google Scholar 

  36. Noldus, L.P., Spink, A.J. & Tegelenbosch, R.A. EthoVision: a versatile video tracking system for automation of behavioral experiments. Behav. Res. Methods Instrum. Comput. 33, 398–414 (2001).

    Article  CAS  Google Scholar 

  37. Spink, A.J., Tegelenbosch, R.A., Buma, M.O. & Noldus, L.P. The EthoVision video tracking system—a tool for behavioral phenotyping of transgenic mice. Physiol. Behav. 73, 731–744 (2001).

    Article  CAS  Google Scholar 

  38. Pellow, S., Chopin, P., File, S.E. & Briley, M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14, 149–167 (1985).

    Article  CAS  Google Scholar 

  39. Willis-Owen, S.A. & Flint, J. The genetic basis of emotional behaviour in mice. Eur. J. Hum. Genet. 14, 721–728 (2006).

    Article  CAS  Google Scholar 

  40. Willis-Owen, S.A. & Flint, J. Identifying the genetic determinants of emotionality in humans; insights from rodents. Neurosci. Biobehav. Rev. 31, 115–124 (2007).

    Article  CAS  Google Scholar 

  41. Dodart, J.C. et al. Behavioral disturbances in transgenic mice overexpressing the V717F beta-amyloid precursor protein. Behav. Neurosci. 113, 982–990 (1999).

    Article  CAS  Google Scholar 

  42. Allbutt, H.N. & Henderson, J.M. Use of the narrow beam test in the rat, 6-hydroxydopamine model of Parkinson's disease. J. Neurosci. Methods 159, 195–202 (2007).

    Article  Google Scholar 

  43. Kalueff, A.V., Jensen, C.L. & Murphy, D.L. Locomotory patterns, spatiotemporal organization of exploration and spatial memory in serotonin transporter knockout mice. Brain Res. 1169, 87–97 (2007).

    Article  CAS  Google Scholar 

  44. Wurbel, H. Ideal homes? Housing effects on rodent brain and behaviour. Trends Neurosci. 24, 207–211 (2001).

    Article  CAS  Google Scholar 

  45. McIlwain, K.L., Merriweather, M.Y., Yuva-Paylor, L.A. & Paylor, R. The use of behavioral test batteries: effects of training history. Physiol. Behav. 73, 705–717 (2001).

    Article  CAS  Google Scholar 

  46. Lalonde, R., Hayzoun, K., Selimi, F., Mariani, J. & Strazielle, C. Motor coordination in mice with hotfoot, Lurcher, and double mutations of the Grid2 gene encoding the delta-2 excitatory amino acid receptor. Physiol. Behav. 80, 333–339 (2003).

    Article  CAS  Google Scholar 

  47. Lalonde, R. & Strazielle, C. Motor coordination, exploration, and spatial learning in a natural mouse mutation (nervous) with Purkinje cell degeneration. Behav. Genet. 33, 59–66 (2003).

    Article  CAS  Google Scholar 

  48. Lalonde, R., Kim, H.D. & Fukuchi, K. Exploratory activity, anxiety, and motor coordination in bigenic APPswe + PS1/DeltaE9 mice. Neurosci. Lett. 369, 156–161 (2004).

    Article  CAS  Google Scholar 

  49. Lalonde, R., Dumont, M., Staufenbiel, M. & Strazielle, C. Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen. Behav. Brain. Res. 157, 91–98 (2005).

    Article  CAS  Google Scholar 

  50. Lalonde, R., Marchetti, N. & Strazielle, C. Primary neurologic screening and motor coordination of Dstdt-J mutant mice (dystonia musculorum) with spinocerebellar atrophy. Physiol. Behav. 86, 46–51 (2005).

    Article  CAS  Google Scholar 

  51. Kalueff, A. & Tuohimaa, P. Pharmacological validation of the mouse elevated horizontal rod (the Suok test) as a novel experimental model of anxiety: sensitivity to diazepam and pentylenetetrazole. Eur. Neuropsychopharmacol. 15, S40–S41 (2005).

    Article  Google Scholar 

  52. Golani, I., Benjamini, Y. & Eilam, D. Stopping behavior: constraints on exploration in rats (Rattus norvegicus). Behav. Brain Res. 53, 21–33 (1993).

    Article  CAS  Google Scholar 

  53. Kalueff, A., Aldridge, J.W., Laporte, J.L., Murphy, D. & Tuohimaa, P. Analyzing grooming microstructure in neurobehavioral experiments. Nat. Protoc. 11, 1–8 (2007).

    Google Scholar 

  54. Kalueff, A.V., Ren-Patterson, R.F. & Murphy, D.L. The developing use of heterozygous mutant mouse models in brain monoamine transporter research. Trends Pharmacol. Sci. 28, 122–127 (2007).

    Article  CAS  Google Scholar 

  55. Cruz, A.P., Frei, F. & Graeff, F.G. Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacol. Biochem. Behav. 49, 171–176 (1994).

    Article  CAS  Google Scholar 

  56. Tubaltseva, V. & Makarchuk, N.E. Anxiolytic-like effects of quercetine in rats tested in the Suok test of anxiety. Stress Behav. Proc. 5, 134–135 (2007).

    Google Scholar 

  57. Staab, J.P., Ruckenstein, M.J., Solomon, D. & Shepard, N.T. Serotonin reuptake inhibitors for dizziness with psychiatric symptoms. Arch. Otolaryngol. Head Neck Surg. 128, 554–560 (2002).

    Article  Google Scholar 

  58. Black, K., Shea, C., Dursun, S. & Kutcher, S. Selective serotonin reuptake inhibitor discontinuation syndrome: proposed diagnostic criteria. J. Psychiatry Neurosci. 25, 255–261 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramos, R.T. Antidepressants and dizziness. J. Psychopharmacol. 20, 708–713 (2006).

    Article  CAS  Google Scholar 

  60. Kamens, H.M. & Crabbe, J.C. The parallel rod floor test: a measure of ataxia in mice. Nat. Protoc. 2, 277–281 (2007).

    Article  Google Scholar 

  61. Geyer, M.A. et al. The effects of lysergic acid diethylamide and mescaline-derived hallucinogens on sensory-integrative function: tactile startle. J. Pharmacol. Exp. Ther. 207, 837–847 (1978).

    CAS  PubMed  Google Scholar 

  62. Geyer, M.A. et al. A characteristic effect of hallucinogens on investigatory responding in rats. Psychopharmacology (Berl.) 65, 35–40 (1979).

    Article  CAS  Google Scholar 

  63. Geyer, M.A. & Light, R.K. LSD-induced alterations of investigatory responding in rats. Psychopharmacology (Berl.) 65, 41–47 (1979).

    Article  CAS  Google Scholar 

  64. Kafkafi, N. Extending SEE for large-scale phenotyping of mouse open-field behavior. Behav. Res. Methods Instrum. Comput. 35, 294–301 (2003).

    Article  Google Scholar 

  65. Kafkafi, N. et al. SEE locomotor behavior test discriminates C57BL/6J and DBA/2J mouse inbred strains across laboratories and protocol conditions. Behav. Neurosci. 117, 464–477 (2003).

    Article  Google Scholar 

  66. Kafkafi, N. & Golani, I. A traveling wave of lateral movement coordinates both turning and forward walking in the ferret. Biol. Cybern. 78, 441–453 (1998).

    Article  CAS  Google Scholar 

  67. Kafkafi, N. et al. Darting behavior: a quantitative movement pattern designed for discrimination and replicability in mouse locomotor behavior. Behav. Brain Res. 142, 193–205 (2003).

    Article  Google Scholar 

  68. Kafkafi, N. & Elmer, G.I. Texture of locomotor path: a replicable characterization of a complex behavioral phenotype. Genes Brain Behav. 4, 431–443 (2005).

    Article  CAS  Google Scholar 

  69. Kafkafi, N., Benjamini, Y., Sakov, A., Elmer, G.I. & Golani, I. Genotype-environment interactions in mouse behavior: a way out of the problem. Proc. Natl. Acad. Sci. USA 102, 4619–4624 (2005).

    Article  CAS  Google Scholar 

  70. Kafkafi, N. & Elmer, G.I. Activity density in the open field: a measure for differentiating the effect of psychostimulants. Pharmacol. Biochem. Behav. 80, 239–249 (2005).

    Article  CAS  Google Scholar 

  71. Flagel, S.B. & Robinson, T.E. Quantifying the psychomotor activating effects of cocaine in the rat. Behav. Pharmacol. 18, 297–302 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The preparation of this protocol was supported in part by the Medical Research Foundation of Tampere University Hospital (Finland), the Intramural Research Program of the National Institute of Mental Health (NIH/NIMH, USA), and NARSAD (USA) YI Award (to A.V.K.). The authors thank Marianne Kuuslahti and Newlin Morgan for their excellent technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan V Kalueff.

Supplementary information

Supplementary Video 1

Rich spectrum of exploratory and motor behaviors that can be registered in the rodent Suok test. (MP4 8191 kb)

Supplementary Video 2

Effects of psychotropic drug lysergic acid diethylamide (LSD) on mouse Suok test behavior. (MP4 8747 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalueff, A., Keisala, T., Minasyan, A. et al. The regular and light–dark Suok tests of anxiety and sensorimotor integration: utility for behavioral characterization in laboratory rodents. Nat Protoc 3, 129–136 (2008). https://doi.org/10.1038/nprot.2007.516

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.516

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing