Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures

Abstract

The availability of a near-complete (96%) collection of gene-deletion mutants in Saccharomyces cerevisiae greatly facilitates the systematic analyses of gene function in yeast. The unique 20 bp DNA 'barcodes' or 'tags' in each deletion strain enable the individual fitness of thousands of deletion mutants to be resolved from a single pooled culture. Here, we present protocols for the study of pooled cultures of tagged yeast deletion mutants with a tag microarray. This process involves five main steps: pooled growth, isolation of genomic DNA, PCR amplification of the barcodes, array hybridization and data analysis. Pooled deletion screening can be used to study gene function, uncover a compound's mode of action and identify drug targets. In addition to these applications, the general method of studying pooled samples with barcode arrays can also be adapted for use with other types of samples, such as mutant collections in other organisms, short interfering RNA vectors and molecular inversion probes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deletion cassette used for constructing strains in the yeast deletion collection.
Figure 2: Description of the competitive growth assay.
Figure 3: Comparison of homozygous profiling for studying gene function and compound mode of action, and heterozygous profiling for drug-target identification.
Figure 4: Timeline for a pooled growth experiment.
Figure 5: Measurement of noise generated in each step of the assay.
Figure 6: Modeling the sampling error generated during the pooled growth step.
Figure 7: Increasing culture volume decreases noise.
Figure 8: Correcting array saturation increases the correlation of uptag and downtag ratios.
Figure 9: Comparison of mean normalization and quantile normalization, highlighting benefits and disadvantages of each.
Figure 10: Choosing a tag-intensity threshold using uptag–downtag ratio agreement.
Figure 11: Sample data showing data analysis steps and expected results.

Similar content being viewed by others

References

  1. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Shoemaker, D.D., Lashkari, D.A., Morris, D., Mittmann, M. & Davis, R.W. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat. Genet. 14, 450–456 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Birrell, G.W. et al. Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents. Proc. Natl. Acad. Sci. USA 99, 8778–8783 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deutschbauer, A.M. et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giaever, G. et al. Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl. Acad. Sci. USA 101, 793–798 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giaever, G. et al. Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat. Genet. 21, 278–283 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Kastenmayer, J.P. et al. Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae. Genome Res. 16, 365–373 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee, W. et al. Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet. 1, e24 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lum, P.Y. et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116, 121–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Ooi, S.L., Shoemaker, D.D. & Boeke, J.D. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science 294, 2552–2556 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Parsons, A.B. et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat. Biotechnol. 22, 62–69 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Parsons, A.B. et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126, 611–625 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Steinmetz, L.M. et al. Systematic screen for human disease genes in yeast. Nat. Genet. 31, 400–404 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Workman, C.T. et al. A systems approach to mapping DNA damage response pathways. Science 312, 1054–1059 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jensen, L.J., Jensen, T.S., de Lichtenberg, U., Brunak, S. & Bork, P. Co-evolution of transcriptional and post-translational cell-cycle regulation. Nature 443, 594–597 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Pollack, J.R. et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc. Natl. Acad. Sci. USA 99, 12963–12968 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Groh, J.L., Luo, Q., Ballard, J.D. & Krumholz, L.R. A method adapting microarray technology for signature-tagged mutagenesis of Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 in anaerobic sediment survival experiments. Appl. Environ. Microbiol. 71, 7064–7074 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karlyshev, A.V. et al. Application of high-density array-based signature-tagged mutagenesis to discover novel Yersinia virulence-associated genes. Infect. Immun. 69, 7810–7819 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Brummelkamp, T.R. et al. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat. Chem. Biol. 2, 202–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Fischer, K.D. et al. Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+ CD8+ thymocytes. Nature 374, 474–474 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Fraser, A. RNA interference: human genes hit the big screen. Nature 428, 375–375 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kolfschoten, I.G. et al. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell 121, 849–858 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Ngo, V.N. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441, 106–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Westbrook, T.F. et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 121, 837–848 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Akhras, M.S. et al. PathogenMip assay: a multiplex pathogen detection assay. PLoS ONE 2, e223 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Clayton, D.G. et al. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat. Genet. 37, 1243–1246 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Hardenbol, P. et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat. Biotechnol. 21, 673–678 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Hardenbol, P. et al. Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res. 15, 269–275 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ooi, S.L., Shoemaker, D.D. & Boeke, J.D. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science 294, 2552–2556 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Pan, X. et al. A robust toolkit for functional profiling of the yeast genome. Mol. Cell. 16, 487–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Yuan, D.S. et al. Improved microarray methods for profiling the Yeast Knockout strain collection. Nucleic Acids Res. 33, e103 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Pierce, S.E. et al. A unique and universal molecular barcode array. Nat. Methods 3, 601–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Davierwala, A.P. et al. The synthetic genetic interaction spectrum of essential genes. Nat. Genet. 37, 1147–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guri Giaever.

Supplementary information

Supplementary Data 1

Matlab function for modeling samling error (PDF 10 kb)

Supplementary Data 2

Barcode sequences on the Affymetrix TAG4 array (PDF 1105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierce, S., Davis, R., Nislow, C. et al. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat Protoc 2, 2958–2974 (2007). https://doi.org/10.1038/nprot.2007.427

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.427

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing