Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Single nucleotide polymorphism detection by polymerase chain reaction-restriction fragment length polymorphism

Abstract

Accurate analysis of DNA sequence variation in not only humans and animals but also other organisms has played a significant role in expanding our knowledge about genetic variety and diversity in a number of different biological areas. The search for an understanding of the causes of genetic variants and mutations has resulted in the development of a simple laboratory technique, known as the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method, for the detection of single nucleotide polymorphisms (SNPs). PCR-RFLP allows rapid detection of point mutations after the genomic sequences are amplified by PCR. The mutation is discriminated by digestion with specific restriction endonucleases and is identified by gel electrophoresis after staining with ethidium bromide (EtBr). This convenient and simple method is inexpensive and accurate for SNP genotyping and especially useful in small basic research studies of complex genetic diseases. The whole protocol takes only a day to carry out.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PCR-RFLP typing of HLA-DRB132.
Figure 2: ABO genotyping by PCR-RFLP34.
Figure 3: The mismatch PCR-RFLP method for the detection of Y393N in exon 9 of the BCKDHA gene38.

Similar content being viewed by others

References

  1. Saiki, R.K. et al. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985).

    Article  CAS  Google Scholar 

  2. Saiki, R.K., Bugawan, T.L., Hron, G.T., Mullis, K.B. & Erlich, H.A. Analysis of enzymatically amplified β-globin and HLA-DQα DNA with allele-specific oligonucleotide probes. Nature 324, 163–166 (1986).

    Article  CAS  Google Scholar 

  3. Mullis, K.B. & Faloona, F.A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335–350 (1987).

    Article  CAS  Google Scholar 

  4. Collins, F.S., Brooks, L.D. & Chakravarti, A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 8, 1229–1231 (1998).

    Article  CAS  Google Scholar 

  5. The International HapMap Consortium. The international HapMap project. Nature 426, 789–796 (2003).

  6. Martin, E.R. et al. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am. J. Hum. Genet. 67, 383–394 (2000).

    Article  CAS  Google Scholar 

  7. de Bakker, P.I.W. et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat. Genet. 38, 1166–1172 (2006).

    Article  CAS  Google Scholar 

  8. Pearson, J.V. et al. Identification of the genetic basis for complex disorders by use of pooling-based genomewide single-nucleotide-polymorphism associated studies. Am. J. Hum. Genet. 80, 126–139 (2007).

    Article  CAS  Google Scholar 

  9. Goldstein, D.B., Ahmadi, K.R., Weale, M.E. & Wood, N.W. Genome scans and candidate gene approaches in the study of common diseases and variable drug responses. Trends Genet. 19, 615–622 (2003).

    Article  CAS  Google Scholar 

  10. Ahmadi, K.R. et al. A single-nucleotide polymorphism tagging set for human drug metabolism and transport. Nat. Genet. 37, 84–89 (2005).

    Article  CAS  Google Scholar 

  11. Delrieu, O. & Bowman, C. Visualizing gene determinants of disease in drug discovery. Pharmacogenomics 7, 311–329 (2006).

    Article  CAS  Google Scholar 

  12. Syvanen, A.C. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat. Rev. Genet. 2, 930–942 (2001).

    Article  CAS  Google Scholar 

  13. Shriver, M.D. et al. Large-scale SNP analysis reveals clustered and continuous patterns of human genetic variation. Hum. Genomics 2, 81–89 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hacia, J.G. et al. Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays. Nat. Genet. 22, 164–167 (1999).

    Article  CAS  Google Scholar 

  15. Kidd, K.K. et al. Developing a SNP panel for forensic identification of individuals. Forensic Sci. Int. 164, 20–32 (2006).

    Article  CAS  Google Scholar 

  16. Iwasaki, H. et al. Accuracy of genotyping for single nucleotide polymorphisms by a microarray-based single nucleotide polymorphism typing method involving hybridization of short allele-specific oligonucleotides. DNA Res. 9, 59–62 (2002).

    Article  CAS  Google Scholar 

  17. Papp, A.C., Pinsonneault, J.K., Cooke, G. & Sadee, W. Single nucleotide polymorphism genotyping using allele-specific PCR and fluorescence melting curves. Biotechniques 34, 1068–1072 (2003).

    Article  CAS  Google Scholar 

  18. O'Meara, D., Ahmadian, A., Odeberg, J. & Lundeberg, J. SNP typing by apyrase-mediated allele-specific primer extension on DNA microarrays. Nucleic Acids Res. 30, e75 (2002).

    Article  Google Scholar 

  19. Pickering, J. Integration of DNA ligation and rolling circle amplification for the homogeneous, end-point detection of single nucleotide polymorphisms. Nucleic Acids Res. 30, e60 (2002).

    Article  Google Scholar 

  20. Chatterjee, P.D. Direct sequencing of bacterial and P1 artificial chromosome-nested deletions for identifying position-specific single-nucleotide polymorphisms. Proc. Natl. Acad. Sci. USA 96, 13276–13281 (1999).

    Article  CAS  Google Scholar 

  21. Deng, G.R. A sensitive non-radioactive PCR-RFLP analysis for detecting point mutations at 12th codon of oncogene c-Ha-ras in DNAs of gastric cancer. Nucleic Acids Res. 16, 6231 (1988).

    Article  CAS  Google Scholar 

  22. Ota, M. et al. Modified PCR-RFLP method for HLA-DPB1 and –DQA1 genotyping. Tissue Antigens 38, 60–71 (1991).

    Article  CAS  Google Scholar 

  23. Livak, K.J., Flood, S.J., Marmaro, J., Giusti, W. & Deetz, K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4, 357–362 (1995).

    Article  CAS  Google Scholar 

  24. Livak, K.J. Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet. Anal. 14, 143–149 (1999).

    Article  CAS  Google Scholar 

  25. Kwiatkowski, R.W., Lyamichev, V., de Arruda, M. & Neri, B. Clinical, genetic, and pharmacogenetic applications of the invader assay. Mol. Diag. 4, 353–364 (1999).

    Article  CAS  Google Scholar 

  26. Fors, L., Lieder, K.W., Vavra, S.H. & Kwiatkowski, R.W. Large-scale SNP scoring from unamplified genomic DNA. Pharmacogenomics 1, 219–229 (2000).

    Article  CAS  Google Scholar 

  27. Haff, L.A. & Smirnov, I.P. Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res. 7, 378–388 (1997).

    Article  CAS  Google Scholar 

  28. Gunderson, K.L., Steemers, F.L., Lee, G., Mendoza, L.G. & Chee, M. A genome-wide scalable SNP genotyping assay using microarray technology. Nat. Genet. 37, 549–554 (2005).

    Article  CAS  Google Scholar 

  29. Abbud, Z.A., Wilson, A.C., Cosgrove, N.M. & Kostis, J.B. Angiotensin-converting enzyme gene polymorphism in systemic hypertension. Am. J. Cardiol. 81, 244–246 (1998).

    Article  CAS  Google Scholar 

  30. Simsek, M., Al-Wardy, N., Al-Khayat, A. & Al-Khabory, M. A PCR-RFLP test for simultaneous detection of two single-nucleotide insertions in the Connexin-26 gene promoter. Genet. Test. 6, 225–228 (2002).

    Article  CAS  Google Scholar 

  31. Bu, H., Rosdahl, I., Sun, Z.-F. & Zhang, H. Importance of polymorphisms in NF-κBI and NF-κBIα genes for melanoma risk, clinicopathological features and tumor progression in Swedish melanoma patients. J. Cancer Res. Clin. Oncol. 183, 856–866 (2007).

    Google Scholar 

  32. Ota, M., Seki, T., Fukushima, H., Tsuji, K. & Inoko, H. HLA-DRB1 genotyping by modified PCR-RFLP method combined with group-specific primers. Tissue Antigens 39, 187–202 (1992).

    Article  CAS  Google Scholar 

  33. Inoko, H. & Ota, M. PCR-RFLP. in Handbook of HLA Typing Techniques (eds. Hui, K.M. & Bidwell, J.L.) 9–70 (CRC Press, Boca Raton, Ann Arbor, London, Tokyo, 1993).

    Google Scholar 

  34. Lee, J.C.-I. & Chang, J.-G. ABO genotyping by polymerase chain reaction. J. Forensic Sci. 37, 1269–1275 (1992).

    Article  CAS  Google Scholar 

  35. Roberts, R.J., Vincze, T., Posfai, J. & Macelis, D. REBASE-enzymes and genes for DNA restriction and modification. Nucleic Acids Res. 35, D269–D270 (2007).

    Article  CAS  Google Scholar 

  36. Ke, X., Collins, A. & Ye, S. PCR designer for restriction analysis of various types of sequence mutation. Bioinformatics 18, 1688–1689 (2002).

    Article  CAS  Google Scholar 

  37. Zhang, R. et al. SNP cutter: a comprehensive tool for SNP PCR-RFLP assay design. Nucleic Acids Res. 33, W489–W492 (2005).

    Article  CAS  Google Scholar 

  38. Love-Gregory, L.D., Dyer, J.A., Grasela, J., Hillman, R.E. & Phillips, C.L. Carrier detection and rapid newborn diagnostic test for the common Y393N maple syrup urine disease allele by PCR-RFLP: culturally permissible testing in the Mennonite community. J. Inherit. Metab. Dis. 24, 393–403 (2001).

    Article  CAS  Google Scholar 

  39. van Baren, M.J. & Heutink, P. The PCR suite. Bioinformatics 20, 591–593 (2004).

    Article  CAS  Google Scholar 

  40. Gardner, S.N. & Wagner, M.C. Software for optimization of SNP and PCR-RFLP genotyping to discriminate many genomes with the fewest assays. BMC Genomics 6, 73 (2005).

    Article  Google Scholar 

  41. Moore, D.D. Purification and concentration of DNA from aqueous solutions. in Current Protocols in Molecular Biology (eds. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. & Struhl, K.) 2.1.1–2.1.9 (John Wiley & Sons, Inc., Hoboken, NJ, USA, 1994).

    Google Scholar 

  42. Roberts, R.J., Vincze, T., Posfai, J. & Macelis, D. REBASE-restriction enzymes and DNA methyltransferases. Nucleic Acids Res. 35, D230–D232 (2005).

    Google Scholar 

  43. Polisky, B. et al. Specificity of substrate recognition by the EcoRI restriction endonuclease. Proc. Natl. Acad. Sci. USA 72, 3310–3314 (1975).

    Article  CAS  Google Scholar 

  44. George, J. & Chirikjian, J.G. Sequence-specific endonuclease BamHI: relaxation of sequence recognition. Proc. Natl. Acad. Sci. USA 79, 2432–2436 (1982).

    Article  CAS  Google Scholar 

  45. Woodbury, C.P. et al. DNA site recognition and reduced specificity of the EcoRI endonuclease. J. Biol. Chem. 255, 11534–11546 (1980).

    CAS  PubMed  Google Scholar 

  46. Sektas, M., Kaczorowski, T. & Podhajska, A.J. Purification and properties of the MboII, a class-IIS restriction endonuclease. Nucleic Acids Res. 20, 433–438 (1992).

    Article  CAS  Google Scholar 

  47. Conlan, L.H., Jose, T.J., Thornton, K.C. & Dupureur, C.M. Modulating restriction endonuclease activities and specificities using neutral detergents. Biotechniques 27, 955–960 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Ota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ota, M., Fukushima, H., Kulski, J. et al. Single nucleotide polymorphism detection by polymerase chain reaction-restriction fragment length polymorphism. Nat Protoc 2, 2857–2864 (2007). https://doi.org/10.1038/nprot.2007.407

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.407

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing