Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A protocol for the in vitro selection of specific oligonucleotide probes for high-resolution DNA typing

Abstract

The confident discrimination of nucleic acids that share a high degree of sequence identity is the major obstacle for the widespread applicability of multiplex DNA-based techniques. This diagnostic uncertainty originates in the insufficient specificity of hybridization, allowing cross-hybridization between unwanted probe–target combinations. Starting from a random mixture of oligonucleotides, we describe a protocol to selectively amplify the probes that bind to the target but not to the similar, unintended targets. The procedure involves five forward hybridizations to generate pools of probes with significant affinity, but not necessarily specificity, for the target. Specificity is then achieved during subtractive hybridization steps, where only probes having differential diagnostic performance are retained. Iterative hybridizations, cloning, sequencing and testing of the performance of selected probes can all be fully automated. Eight weeks are required for the full completion of a project composed of 40 probe–target pairs, even when targets share as much as 87% of sequence identity. While alternative, computer-assisted, rational oligonucleotide design may produce an uncertain outcome, the present protocol generates robust and specific probes suitable for a variety of multiplex, nucleic acid-based detection/typing platforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alignment of 39 human papilloma virus (HPV) target sequences, which are entering the iterative hybridization protocol showing up to 87% sequence identity between certain target pairs.
Figure 2: Schematic presentation of iterative hybridizations.
Figure 3: Molecular interaction between HPV6 target (black) and corresponding CP6 probe (blue).
Figure 4: Hybridization of selected pooled probes (PPs) versus individual cloned probes (CPs).
Figure 5: Partial sequence alignment of CP33 with its specific and nine similar HPV targets.

Similar content being viewed by others

References

  1. Dean, F.B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA 99, 5261–5266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Makrigiorgos, G.M., Chakrabarti, S., Zhang, Y., Kaur, M. & Price, B.D. A PCR-based amplification method retaining the quantitative difference between two complex genomes. Nat. Biotechnol. 20, 936–939 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Bertilsson, S., Cavanaugh, C.M. & Polz, M.F. Sequencing-independent method to generate oligonucleotide probes targeting a variable region in bacterial 16S rRNA by PCR with detachable primers. Appl. Environ. Microbiol. 67, 6077–6086 (2002).

    Article  Google Scholar 

  4. Regnault, B., Grimont, F. & Grimont, P.A. Universal ribotyping method using a chemically labelled oligonucleotide probe mixture. Res. Microbiol. 148, 649–659 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Perez-Luz, S., Adela Yanez, M. & Catalan, V. Identification of waterborne bacteria by the analysis of 16S–23S rRNA intergenic spacer region. J. Appl. Microbiol. 97, 191–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Mohammadi, T., Pietersz, R.N., Vandenbroucke-Grauls, C.M., Savelkoul, P.H. & Reesink, H.W. Detection of bacteria in platelet concentrates: comparison of broad-range real-time 16S rDNA polymerase chain reaction and automated culturing. Transfusion 45, 731–736 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Nadkarni, M.A., Martin, F.E., Jacques, N.A. & Hunter, N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148 (Pt. 1): 257–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Santos, S. & Ochman, H. Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ. Microbiol. 6, 754–759 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Watanabe, K., Kodama, Y. & Harayama, S. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microbiol. Methods. 44, 253–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Okada, M., Ogawa, T., Kubonoya, H., Yoshizumi, H. & Shinozaki, K. Detection and sequence-based typing of human adenoviruses using sensitive universal primer sets for the hexon gene. Arch. Virol. 152, 1–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Schaefer, S., Glebe, D., Wend, U.C., Oyunbileg, J. & Gerlich, W.H. Universal primers for real-time amplification of DNA from all known Orthohepadnavirus species. J. Clin. Virol. 27, 30–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Hoffmann, E., Stech, J., Guan, Y., Webster, R.G. & Perez, D.R. Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 146, 2275–2289 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Qu, W. et al. PCR detection of human papillomavirus: comparison between MY09/MY11 and GP5+/GP6+ primer systems. J. Clin. Microbiol. 35, 1304–1310 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Heinze, B. A database of PCR primers for the chloroplast genomes of higher plants. Plant Methods 3, 4 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pineau, P. et al. A universal primer set for PCR amplification of nuclear histone H4 genes from all animal species. Mol. Biol. Evol. 22, 582–588 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Zietkiewicz, E., Rafalski, A. & Labuda, D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176–183 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517 (1975).

    Article  CAS  PubMed  Google Scholar 

  18. Drmanac, R., Labat, I., Brukner, I. & Crkvenjakov, R. Sequencing of megabase plus DNA by hybridization: theory of the method. Genomics 4, 114–128 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Moiseev, L., Unlu, M.S., Swan, A.K., Goldberg, B.B. & Cantor, C.R. DNA conformation on surfaces measured by fluorescence self-interference. Proc. Natl. Acad. Sci. USA. 103, 2623–2628 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gharizadeh, B. et al. Viral and microbial genotyping by a combination of multiplex competitive hybridization and specific extension followed by hybridization to generic tag arrays. Nucleic Acids Res. 31, e146 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brukner, I., Tremblay, G.A. & Paquin, B. Generation of amplifiable genome-specific oligonucleotide probes and libraries. Biotechniques 33, 874–876 878, 880 passim (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Pozhitkov, A. et al. Tests of rRNA hybridization to microarrays suggest that hybridization characteristics of oligonucleotide probes for species discrimination cannot be predicted. Nucleic Acids Res. 34, e66 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brukner, I., El-Ramahi, R., Gorska-Flipot, I., Krajinovic, M. & Labuda, D. An in vitro selection scheme for oligonucleotide probes to discriminate between closely related DNA sequences. Nucleic Acid Res. 35, e66 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brukner, I. et al. Hybridization assay performed at ambient temperature for typing high-risk human papillomaviruses. J. Clin. Virol. 39, 113–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Robertson, D.L. & Joyce, G.F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Ellington, A.D. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Evans, M.F., Adamson, C.S., Simmons-Arnold, L. & Cooper, K. Touchdown general primer (GP5+/GP6+) PCR and optimized sample DNA concentration support the sensitive detection of human papillomavirus. BMC Clin. Pathol. 5, 10 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work reviewed in this article is supported by the Canadian Institutes of Health Research (NTA-71859) and Research Center of Sainte-Justine Hospital. M.K. is a scholar of the Fonds de la Recherche en Santeé du Québec. We thank our colleagues Dr. Izabella Gorska, Jacob Sawicki (Acrobat Illustrator wizard) and Razan El-Ramahi for the contribution to the HPV project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Brukner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brukner, I., Krajinovic, M., Dascal, A. et al. A protocol for the in vitro selection of specific oligonucleotide probes for high-resolution DNA typing. Nat Protoc 2, 2807–2814 (2007). https://doi.org/10.1038/nprot.2007.398

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.398

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing