Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Monitoring of cell therapy and assessment of cardiac function using magnetic resonance imaging in a mouse model of myocardial infarction

Abstract

We have developed a mouse severe combined immunodeficient (SCID) model of myocardial infarction based on permanent coronary artery occlusion that allows long-term functional analysis of engrafted human embryonic stem cell-derived cardiomyocytes, genetically marked with green fluorescent protein (GFP), in the mouse heart. We describe methods for delivery of dissociated cardiomyocytes to the left ventricle that minimize scar formation and visualization and validation of the identity of the engrafted cells using the GFP emission spectrum, and histological techniques compatible with GFP epifluorescence, for monitoring phenotypic changes in the grafts in vivo. In addition, we describe how magnetic resonance imaging can be adapted for use in mice to monitor cardiac function non-invasively and repeatedly. The model can be adapted to include multiple control or other cell populations. The procedure for a cohort of six mice can be completed in a maximum of 13 weeks, depending on follow-up, with 30 h of hands-on time.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surgical equipment.
Figure 2: Magnetic resonance imaging.
Figure 3: Myocardial infarction and cell injection.
Figure 4: Emission wavelength spectra.
Figure 5: Immunofluorescent staining 3 weeks after injection of CM-enriched differentiated HES3-GFP.

Similar content being viewed by others

References

  1. van Laake, L.W., Hassink, R., Doevendans, P.A. & Mummery, C. Heart repair and stem cells. J. Physiol. 577, 467–478 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iso, Y. et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem. Biophys. Res. Commun. 354, 700–706 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Muller-Ehmsen, J. et al. Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J. Mol. Cell Cardiol. 41, 876–884 (2006).

    Article  PubMed  Google Scholar 

  4. Menard, C. et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet 366, 1005–1012 (2005).

    Article  PubMed  Google Scholar 

  5. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Orlic, D. et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. U.S.A 98, 10344–10349 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, S. et al. Host vascular niche contributes to myocardial repair induced by intracoronary transplantation of bone marrow CD34+ progenitor cells in infarcted swine heart. Stem Cells 25, 1195–1203 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Rosenzweig, A. Cardiac cell therapy—mixed results from mixed cells. N. Engl. J. Med. 355, 1274–1277 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. van Laake, L.W. et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. http://dx.doi.org/10.1016/j.scr.2007.06.001.

  10. Huang, N.F. et al. A rodent model of myocardial infarction for testing the efficacy of cells and polymers for myocardial reconstruction. Nat. Protoc. 1, 1596–1609 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. van Oort, R.J. et al. MEF2 activates a genetic program promoting chamber dilation and contractile dysfunction in calcineurin-induced heart failure. Circulation 114, 298–308 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. van Laake, L.W. et al. Endoglin has a crucial role in blood cell-mediated vascular repair. Circulation 114, 2288–2297 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Yutzey, K.E. & Robbins, J. Principles of genetic murine models for cardiac disease. Circulation 115, 792–799 (2007).

    Article  PubMed  Google Scholar 

  14. Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Passier, R. et al. Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23, 772–780 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Behfar, A. et al. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J. Exp. Med. 204, 405–420 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tomescot, A. et al. Differentiation in vivo of cardiac committed human embryonic stem cells in post-myocardial infarcted rats. Stem Cells 25, 2200–2205 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Costa, M. et al. The hESC line Envy expresses high levels of GFP in all differentiated progeny. Nat. Methods 2, 259–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Doevendans, P.A., Becker, K.D., An, R.H. & Kass, R.S. The utility of fluorescent in vivo reporter genes in molecular cardiology. Biochem. Biophys. Res. Commun. 222, 352–358 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Laflamme, M.A. et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol. 167, 663–671 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Costa, M., Sourris, K., Hatzistavrou, T., Elefanty, A.G. & Stanley, E.G. Expansion of human embryonic stem cells in vitro. Curr Protoc Stem Cell Biol. Unit 1F.2 (2007).

  22. Mummery, C.L., Ward, D. & Passier, R. Differentiation of human embryonic stem cells to cardiomyocytes by coculture with endoderm in serum-free medium. Curr. Protoc. Stem Cell Biol. Unit 1F.2 (2007).

  23. Balsam, L.B. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668–673 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Brazelton, T.R. & Blau, H.M. Optimizing techniques for tracking transplanted stem cells in vivo. Stem Cells 23, 1251–1265 (2005).

    Article  PubMed  Google Scholar 

  25. Burns, T.C. et al. Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation: a word of caution. Stem Cells 24, 1121–1127 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Murry, C.E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Nygren, J.M. et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10, 494–501 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Shultz, L.D. et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol. 154, 180–191 (1995).

    CAS  PubMed  Google Scholar 

  29. Bajanca, F., Luz, M., Duxson, M.J. & Thorsteinsdottir, S. Integrins in the mouse myotome: developmental changes and differences between the epaxial and hypaxial lineage. Dev. Dyn. 231, 402–415 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Liesbeth Winter, Krista den Ouden and Sandra Bovens for their help with validation of the MI and MRI protocol, and to Daan Lips for surgical training.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Laake, L., Passier, R., Monshouwer-Kloots, J. et al. Monitoring of cell therapy and assessment of cardiac function using magnetic resonance imaging in a mouse model of myocardial infarction. Nat Protoc 2, 2551–2567 (2007). https://doi.org/10.1038/nprot.2007.371

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.371

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing