Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Genetic manipulation of Aspergillus nidulans: meiotic progeny for genetic analysis and strain construction

Abstract

The multicellular microbial eukaryote Aspergillus nidulans is an excellent model for the study of a wide array of biological processes. Studies in this system contribute significantly to understanding fundamental biological principles and are relevant for biotechnology and industrial applications, as well as human, animal and plant fungal pathogenesis. A. nidulans is easily manipulated using classical and molecular genetics. Here, we describe the storage and handling of A. nidulans and procedures for genetic crossing, progeny analysis and growth testing. These procedures are used for Mendelian analysis of segregation of alleles to show whether a mutant phenotype segregates as a single gene and independent assortment of genes to determine the linkage relationship between genes. Meiotic crossing is used for construction of multiple mutant strains for genetic analysis. Genetic crossing and analysis of progeny can be undertaken in 2–3 weeks and growth testing takes 2–3 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Life cycle of A. nidulans.
Figure 2: Tools for physical transfer of A. nidulans conidia.
Figure 3: Sexual crossing of A. nidulans.

Similar content being viewed by others

References

  1. Pontecorvo, G., Roper, J.A., Hemmons, L.M., MacDonald, K.D. & Bufton, A.W.J. The genetics of Aspergillus nidulans . Adv. Genet. 5, 141–238 (1953).

    Article  CAS  PubMed  Google Scholar 

  2. Käfer, E. An 8-chromosome map of Aspergillus nidulans . Adv. Genet. 9, 105–145 (1958).

    Article  PubMed  Google Scholar 

  3. Käfer, E. The processes of spontaneous recombination in vegetative nuclei of Aspergillus nidulans . Genetics 46, 1581–1609 (1961).

    PubMed  PubMed Central  Google Scholar 

  4. Clutterbuck, A.J. A mutational analysis of conidial development in Aspergillus nidulans . Genetics 63, 317–327 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Adams, T.H., Boylan, M.T. & Timberlake, W.E. brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans . Cell 54, 353–362 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Mirabito, P.M., Adams, T.H. & Timberlake, W.E. Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57, 859–868 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Timberlake, W.E. Molecular genetics of Aspergillus development. Annu. Rev. Genet. 24, 5–36 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Oakley, B.R. & Morris, N.R. A beta-tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly. Cell 24, 837–845 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Osmani, S.A., Engle, D.B., Doonan, J.H. & Morris, N.R. Spindle formation and chromatin condensation in cells blocked at interphase by mutation of a negative cell cycle control gene. Cell 52, 241–251 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Osmani, S.A., Pu, R.T. & Morris, N.R. Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell 53, 237–244 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Osmani, S.A. & Mirabito, P.M. The early impact of genetics on our understanding of cell cycle regulation in Aspergillus nidulans . Fungal Genet. Biol. 41, 401–410 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Xiang, X., Zuo, W., Efimov, V.P. & Morris, N.R. Isolation of a new set of Aspergillus nidulans mutants defective in nuclear migration. Curr. Genet. 35, 626–630 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Momany, M. Polarity in filamentous fungi: establishment, maintenance and new axes. Curr. Opin. Microbiol. 5, 580–585 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Goldman, G.H. & Käfer, E. Aspergillus nidulans as a model system to characterize the DNA damage response in eukaryotes. Fungal Genet. Biol. 41, 428–442 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Brambl, R. & Marzluf, G.A. (eds.) The Mycota. A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research (Springer-Verlag, Berlin, Heidelberg, 2004).

    Google Scholar 

  16. Yu, J.H. & Keller, N. Regulation of secondary metabolism in filamentous fungi. Annu. Rev. Phytopathol. 43, 437–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Hicks, J.K., Yu, J.H., Keller, N.P. & Adams, T.H. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J. 16, 4916–4923 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arst, H.N. & Penalva, M.A. pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends Genet. 19, 224–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Penalva, M.A. & Arst, H.N. Jr . Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu. Rev. Microbiol. 58, 425–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Froeliger, E.H. & Carpenter, B.E. NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol. Gen. Genet. 251, 647–656 (1996).

    CAS  PubMed  Google Scholar 

  21. Tudzynski, B., Homann, V., Feng, B. & Marzluf, G.A. Isolation, characterization and disruption of the areA nitrogen regulatory gene of Gibberella fujikuroi . Mol. Gen. Genet. 261, 106–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Clutterbuck, A.J. Linkage map and locus list. Prog. Ind. Microbiol. 29, 791–824 (1994).

    CAS  PubMed  Google Scholar 

  23. Galagan, J.E. et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae . Nature 438, 1105–1115 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Machida, M. et al. Genome sequencing and analysis of Aspergillus oryzae . Nature 438, 1157–1161 (2005).

    Article  PubMed  Google Scholar 

  25. Nierman, W.C. et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus . Nature 438, 1151–1156 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Pel, H.J. et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 25, 221–231 (2007).

    Article  PubMed  Google Scholar 

  27. Martinelli, S.D. & Kinghorn, J.R. (eds.) Aspergillus: 50 Years on (Elsevier Science B.V., Amsterdam, 1994).

    Google Scholar 

  28. Todd, R.B., Davis, M.A. & Hynes, M.J. Genetic manipulation of Aspergillus nidulans: heterokaryons and diploids for dominance, complementation and haploidization analyses. Nat. Protocols DOI 10.1038/nprot.2007.113 (2007).

  29. Tilburn, J. et al. Transformation by integration in Aspergillus nidulans . Gene 26, 205–221 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Hynes, M.J. Transformation of filamentous fungi. Exp. Mycol. 10, 1–8 (1986).

    Article  Google Scholar 

  31. Nayak, T. et al. A versatile and efficient gene-targeting system for Aspergillus nidulans . Genetics 172, 1557–1566 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fincham, J.R. Transformation in fungi. Microbiol. Rev. 53, 148–170 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Oakley, B.R. et al. Cloning, mapping and molecular analysis of the pyrG (orotidine-5′-phosphate decarboxylase) gene of Aspergillus nidulans . Gene 61, 385–399 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Oakley, C.E., Weil, C.F., Kretz, P.L. & Oakley, B.R. Cloning of the riboB locus of Aspergillus nidulans . Gene 53, 293–298 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Osmani, A.H., May, G.S. & Osmani, S.A. The extremely conserved pyroA gene of Aspergillus nidulans is required for pyridoxine synthesis and is required indirectly for resistance to photosensitizers. J. Biol. Chem. 274, 23565–23569 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Durrens, P., Green, P.M., Arst, H.N. Jr & Scazzocchio, C. Heterologous insertion of transforming DNA and generation of new deletions associated with transformation in Aspergillus nidulans . Mol. Gen. Genet. 203, 544–549 (1986).

    Article  CAS  PubMed  Google Scholar 

  37. Upshall, A. Genetic and molecular characterization of argB+ transformants of Aspergillus nidulans . Curr. Genet. 10, 593–599 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. Yelton, M.M., Hamer, J.E. & Timberlake, W.E. Transformation of Aspergillus nidulans by using a trpC plasmid. Proc. Natl. Acad. Sci. USA 81, 1470–1474 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van Gorcom, R.F., Punt, P.J., Pouwels, P.H. & van den Hondel, C.A. A system for the analysis of expression signals in Aspergillus . Gene 48, 211–217 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Davis, M.A., Cobbett, C.S. & Hynes, M.J. An amdS-lacZ fusion for studying gene regulation in Aspergillus . Gene 63, 199–212 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Szewczyk, E. et al. Fusion PCR and gene targeting in Aspergillus nidulans . Nat. Protocols 1, 3111–3120 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Pachlinger, R., Mitterbauer, R., Adam, G. & Strauss, J. Metabolically independent and accurately adjustable Aspergillus sp. expression system. Appl. Environ. Microbiol. 71, 672–678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zadra, I., Abt, B., Parson, W. & Haas, H. xylP promoter-based expression system and its use for antisense downregulation of the Penicillium chrysogenum nitrogen regulator NRE. Appl. Environ. Microbiol. 66, 4810–4816 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hammond, T.M. & Keller, N.P. RNA silencing in Aspergillus nidulans is independent of RNA-dependent RNA polymerases. Genetics 169, 607–617 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gems, D., Johnstone, I.L. & Clutterbuck, A.J. An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene 98, 61–67 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Osherov, N. & May, G. Conidial germination in Aspergillus nidulans requires RAS signaling and protein synthesis. Genetics 155, 647–656 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fisher, R.A. & Yates, F. Statistical Tables for Biological, Agricultural and Medical Research (Oliver and Boyd, Edinburgh, 1938).

    Google Scholar 

  48. Elliott, C.G. The cytology of Aspergillus nidulans . Genet. Res. Camb. 1, 462–476 (1960).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Q. Lang for photography and K. Nguygen for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B Todd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todd, R., Davis, M. & Hynes, M. Genetic manipulation of Aspergillus nidulans: meiotic progeny for genetic analysis and strain construction. Nat Protoc 2, 811–821 (2007). https://doi.org/10.1038/nprot.2007.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.112

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing