Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Total internal reflection with fluorescence correlation spectroscopy

Abstract

Total internal reflection–fluorescence correlation spectroscopy (TIR-FCS) is an emerging technique that is used to measure events at or near an interface, including local fluorophore concentrations, local translational mobilities and the kinetic rate constants that describe the association and dissociation of fluorophores at the interface. TIR-FCS is also an extremely promising method for studying dynamics at or near the basal membranes of living cells. This protocol gives a general overview of the steps necessary to construct and test a TIR-FCS system using either through-prism or through-objective internal reflection geometry adapted for FCS. The expected forms of the autocorrelation function are discussed for the cases in which fluorescent molecules in solution diffuse through the depth of the evanescent field, but do not bind to the surface of interest, and in which reversible binding to the surface also occurs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Apparatus.
Figure 2: Apparatus.
Figure 3: Expected results for TIR-FCS.

Similar content being viewed by others

References

  1. Thompson, N.L. & Pero, J.K. Total internal reflection fluorescence microscopy: applications in biophysics. in Fluorescence Spectroscopy in Biology: Advanced Methods and Their Applications to Membranes, Proteins, DNA and Cells (eds. Wolfbeis, O.S., Hof, M., Hulterer, R. & Fidler, V.) 19–103 (Springer-Verlag, Berlin, 2005).

    Google Scholar 

  2. Schneckenburger, H. Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr. Opin. Biotech. 16, 13–18 (2005).

    Article  CAS  Google Scholar 

  3. Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774 (2001).

    Article  CAS  Google Scholar 

  4. Thompson, N.L., Pearce, K.H. & Hsieh, H.V. Total internal reflection fluorescence microscopy: application to substrate-supported planar membranes. Eur. Biophys. J. 22, 367–378 (1993).

    Article  CAS  Google Scholar 

  5. Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Methods Enzymol. 361, 1–33 (2003).

    Article  CAS  Google Scholar 

  6. Axelrod, D. & Omann, G.E. Combinatorial microscopy. Nat. Rev. Mol. Cell Biol. 7, 944–952 (2006).

    Article  CAS  Google Scholar 

  7. Shaw, J.E., Oreopoulos, J., Wong, D., Hsu, J.C.Y. & Yip, C.M. Coupling evanescent-wave fluorescence imaging and spectroscopy with scanning probe microscopy: challenges and insights from TIRF-AFM. Surf. Interface Anal. 38, 1459–1471 (2006).

    Article  CAS  Google Scholar 

  8. Kahya, N. & Schwille, P. Fluorescence correlation studies of lipid domains in model membranes. Mol. Membr. Biol. 23, 29–39 (2006).

    Article  CAS  Google Scholar 

  9. Gösch, M. & Rigler, R. Fluorescence correlation spectroscopy of molecular motions and kinetics. Adv. Drug Deliv. Rev. 57, 169–190 (2005).

    Article  Google Scholar 

  10. Thompson, N.L. Fluorescence correlation spectroscopy. in Topics in Fluorescence Spectroscopy Vol. 1 (ed. Lakowicz, J.R.) 337–378 (Plenum Press, New York, 1991).

    Google Scholar 

  11. Rigler, R. & Elson, E.S. Fluorescence Correlation Spectroscopy: Theory and Applications (Springer, Berlin, 2001).

    Book  Google Scholar 

  12. Thompson, N.L., Lieto, A.M. & Allen, N.W. Recent advances in fluorescence correlation spectroscopy. Curr. Opin. Struct. Biol. 12, 634–641 (2002).

    Article  Google Scholar 

  13. Thompson, N.L. & Pero, J.K. Total internal reflection-fluorescence correlation spectroscopy. in Reviews in Fluorescence 2006 Vol. 3 (eds. Geddes, C.D. & Lakowicz, J.R.) 215–237 (Kluwer Academic/Plenum Press, New York, 2006).

    Chapter  Google Scholar 

  14. Pero, J.K., Haas, E.M. & Thompson, N.L. Size dependence of protein diffusion very close to membrane surfaces: measurement by total internal reflection with fluorescence correlation spectroscopy. J. Phys. Chem. B 110, 10910–10918 (2006).

    Article  CAS  Google Scholar 

  15. Lieto, A.M. & Thompson, N.L. Total internal reflection with fluorescence correlation spectroscopy: nonfluorescent competitors. Biophys. J. 87, 1268–1278 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Starr, T.E. & Thompson, N.L. Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion. Biophys. J. 80, 1575–1584 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Thompson, N.L. Surface binding rates of nonfluorescent molecules may be obtained by total internal reflection with fluorescence correlation spectroscopy. Biophys. J. 38, 327–329 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Thompson, N.L., Burghardt, T.P. & Axelrod, D. Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys. J. 33, 435–454 (1981).

    Article  CAS  PubMed  Google Scholar 

  19. Hassler, K., Anhut, T., Rigler, R., Gösch, M. & Lasser, T. High count rates with total internal reflection fluorescence correlation spectroscopy. Biophys. J. 88, L01–L03 (2005).

    Article  Google Scholar 

  20. Hassler, K. et al. Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule. Opt. Express. 13, 7415–7423 (2005).

    Article  CAS  Google Scholar 

  21. Ohsugi, Y., Saito, K., Tamura, M. & Kinjo, M. Lateral mobility of membrane-binding proteins in living cells measured by total internal reflection fluorescence correlation spectroscopy. Biophys. J. 91, 3456–3464 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Leutenegger, M. et al. Dual-color total internal reflection fluorescence cross-correlation spectroscopy. J. Biomed. Opt. 11, 040502 (2006).

    Article  Google Scholar 

  23. Huang, Z., Pearce, K.H. & Thompson, N.L. Translational diffusion of bovine prothrombin fragment 1 weakly bound to supported planar membranes: Measurement by total internal reflection with fluorescence pattern photobleaching recovery. Biophys. J. 67, 1754–1766 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Starr, T.E. & Thompson, N.L. Formation and characterization of planar supported phospholipid bilayers supported on TiO2 and SrTiO3 single crystals. Langmuir 16, 10301–10308 (2000).

    Article  CAS  Google Scholar 

  25. Steyer, J.A. & Almers, W. A real-time view of life within 100 nm of the plasma membrane. Nat. Rev. Mol. Cell Biol. 2, 268–275 (2001).

    Article  CAS  Google Scholar 

  26. Burghardt, T.P. & Thompson, N.L. Evanescent intensity of a focused Gaussian light beam undergoing total internal reflection in a prism. Opt. Eng. 23, 62–67 (1984).

    Article  Google Scholar 

  27. Mattheyses, A.L. & Axelrod, D. Direct measurement of the evanescent field profile produced by objective-based total internal reflection. J. Biomed. Opt. 11, 014006 (2006).

    Article  Google Scholar 

  28. Burghardt, T.P., Ajtai, K. & Borejdo, J. In situ single-molecule imaging with attoliter detection using objective total internal reflection confocal microscopy. Biochemistry 45, 4058–4068 (2006).

    Article  CAS  Google Scholar 

  29. Thompson, N.L. & Axelrod, D. Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy. Biophys. J. 43, 103–114 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Lieto, A.M., Cush, R.C. & Thompson, N.L. Ligand–receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys. J. 85, 3294–3302 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Hansen, R.L. & Harris, J.M. Total internal reflection fluorescence correlation spectroscopy for counting molecules at solid/liquid interfaces. Anal. Chem. 70, 2565–2575 (1998).

    Article  CAS  Google Scholar 

  32. Hansen, R.L. & Harris, J.M. Measuring reversible adsorption kinetics of small molecules at solid/liquid interfaces by total internal reflection fluorescence correlation spectroscopy. Anal. Chem. 70, 4247–4256 (1998).

    Article  CAS  Google Scholar 

  33. McCain, K.S. & Harris, J.M. Total internal reflection fluorescence-correlation spectroscopy study of molecular transport in thin sol–gel films. Anal. Chem. 75, 3616–3624 (2003).

    Article  CAS  Google Scholar 

  34. Starr, T.E. & Thompson, N.L. Local diffusion and concentration of IgG near planar membranes: measurement by total internal reflection with fluorescence correlation spectroscopy. J. Phys. Chem. B 106, 2365–2371 (2002).

    Article  CAS  Google Scholar 

  35. Harlepp, S., Robert, J., Darnton, N.C. & Chatenay, D. Subnanometric measurements of evanescent wave penetration depth using total internal reflection fluorescence correlation spectroscopy. Appl. Phys. Lett. 85, 3917–3919 (2004).

    Article  CAS  Google Scholar 

  36. Hollars, C.W. et al. Bioassay based on single molecule fluorescence detection in microfluidic channels. Anal. Bioanal. Chem. 385, 1384–1388 (2006).

    Article  CAS  Google Scholar 

  37. Kannan, B., Har, J.Y., Liu, P., Maruyama, I., Ding, J.L. & Wohland, T. Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy. Anal. Chem. 78, 3444–3451 (2006).

    Article  CAS  Google Scholar 

  38. Bachir, A.I., Durisic, N., Hebert, B., GrĂĽtter, P. & Wiseman, P.W. Characterization of blinking dynamics in quantum dot ensembles using image correlation spectroscopy. J. Appl. Phys. 99, 064503 (2006).

    Article  Google Scholar 

  39. Sund, S.E. & Axelrod, D. Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching. Biophys. J. 79, 1655–1669 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Holden, M.A. & Cremer, P.S. Microfluidic tools for studying the specific binding, adsorption, and displacement of proteins at interfaces. Annu. Rev. Phys. Chem. 56, 369–387 (2005).

    Article  CAS  Google Scholar 

  41. Foote, R.S., Khandurina, J., Jacobson, S.C. & Ramsey, J.M. Preconcentration of proteins on microfluidic devices using porous silica membranes. Anal. Chem. 77, 57–63 (2005).

    Article  CAS  Google Scholar 

  42. Földes-Papp, Z. What it means to measure a single molecule in a solution by fluorescence fluctuation spectroscopy. Exp. Mol. Pathol. 80, 209–218 (2006).

    Article  Google Scholar 

  43. Burghardt, T.P., Charlesworth, J.E., Halstead, M.F., Tarara, J.E. & Ajtai, K. In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy. Biophys. J. 90, 4662–4671 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Gell, C., Brockwell, D. & Smith, A. Handbook of Single Molecule Fluorescence Spectroscopy (Oxford University Press, Oxford, UK, 2006).

    Google Scholar 

  45. Saffarian, S. & Elson, E.L. Statistical analysis of fluorescence correlation spectroscopy: the standard deviation and bias. Biophys. J. 84, 2030–2042 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Borejdo, J., Talent, J. & Akopova, I. Measuring rotations of a few cross-bridges in skeletal muscle. Exp. Biol. Med. 231, 28–38 (2006).

    Article  CAS  Google Scholar 

  47. Stout, A.L. & Axelrod, D. Evanescent field excitation of fluorescence by epi-illumination microscopy. Appl. Opt. 28, 5237–5242 (1989).

    Article  CAS  Google Scholar 

  48. Hillesheim, L.W. & Müller, J.D. The dual-color photon counting histogram with non-ideal photodetectors. Biophys. J. 89, 3491–3507 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Dertinger, T., von der Hocht, I., Benda, A., Hof, M. & Enderlein, J. Surface sticking and lateral diffusion of lipids in supported bilayers. Langmuir 22, 9339–9344 (2006).

    Article  CAS  Google Scholar 

  50. Axelrod, D. Selective imaging of surface fluorescence with very high aperture microscope objectives. J. Biomed. Opt. 6, 6–13 (2001).

    Article  CAS  Google Scholar 

  51. Widengren, J., Mets, U. & Rigler, R. Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J. Phys. Chem. 99, 13368–13379 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Randall C. Cush, Emily M. Haas, Alena M. Lieto, Jamie K. Pero and Tammy E. Starr for their contributions to the development and implementation of TIR-FCS in our laboratory. This work was supported by NIH grant HL073937 and by NSF grant MCB-0641087.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy L Thompson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, N., Steele, B. Total internal reflection with fluorescence correlation spectroscopy. Nat Protoc 2, 878–890 (2007). https://doi.org/10.1038/nprot.2007.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.110

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing