Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Dehydroalanine-containing peptides: preparation from phenylselenocysteine and utility in convergent ligation strategies

Abstract

This protocol describes the methodology for the synthesis of dehydroalanine (Dha)-containing peptides and illustrates their use in convergent ligation strategies for the preparation of peptide conjugates. A nonproteinogenic amino acid, Fmoc-Se-phenylselenocysteine (SecPh), can be prepared in high yield over four synthetic steps and be conveniently incorporated into peptides by standard solid-phase peptide synthesis techniques. Globally deprotected peptides containing phenylselenocysteine can be converted to dehydrated peptides following a chemoselective, mild oxidation with hydrogen peroxide or sodium periodate (i.e., the phenylselenocysteine side chain is converted to that of Dha). Dha residues are electrophilic handles for the preparation of glycopeptides, lipopeptides or other peptide conjugates; one such transformation will be outlined here. The preparation of Dha-containing peptides, including the synthesis of SecPh, peptide elongation and oxidative treatment of phenylselenocysteine-containing peptides can be completed by one person in approximately 3–5 weeks. However, once SecPh is in hand, the time required for the preparation of peptides is significantly shorter and comparable to that for any peptide synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Low-cost alternatives to an automated peptide synthesizer.
Figure 4: Representative setup for cannulating a solution between two flasks using nitrogen gas pressure.
Figure 5: Representative mass spectrometry data for SecPh- and Dha-containing peptides.
Figure 6

Similar content being viewed by others

References

  1. Chatterjee, C., Paul, M., Xie, L. & van der Donk, W.A. Biosynthesis and mode of action of lantibiotics. Chem. Rev. 105, 633–684 (2005).

    Article  CAS  Google Scholar 

  2. Lau, R.C.M. & Rinehart, K.L. Berninamycin-B, Berninamycin-C, and Berninamycin-D, minor metabolites from Streptomyces bernensis. J. Antibiot. 47, 1466–1472 (1994).

    Article  CAS  Google Scholar 

  3. Anderson, B., Hodgkin, D.C. & Viswamitra, M.A. The structure of thiostrepton. Nature 225, 233–235 (1970).

    Article  CAS  Google Scholar 

  4. Galonić, D.P., van der Donk, W.A. & Gin, D.Y. Oligosaccharide-peptide ligation of glycosyl thiolates with dehydropeptides: synthesis of S-linked mucin-related glycopeptide conjugates. Chem. Eur. J. 9, 5997–6006 (2003).

    Article  Google Scholar 

  5. Zhu, Y. & van der Donk, W.A. Convergent synthesis of peptide conjugates using dehydroalanines for chemoselective ligations. Org. Lett. 3, 1189–1192 (2001).

    Article  CAS  Google Scholar 

  6. Gieselman, M.D., Zhu, Y., Zhou, H., Galonic, D. & van der Donk, W.A. Selenocysteine derivatives for chemoselective ligations. Chembiochem 3, 709–716 (2002).

    Article  CAS  Google Scholar 

  7. Lemieux, G.A. & Bertozzi, C.R. Chemoselective ligation reactions with proteins, oligosaccharides and cells. TIBTECH 16, 506–513 (1998).

    Article  CAS  Google Scholar 

  8. Durek, T. & Becker, C.F. Protein semi-synthesis: new proteins for functional and structural studies. Biomol. Eng. 22, 153–172 (2005).

    Article  CAS  Google Scholar 

  9. Dawson, P.E., Muir, T.W., Clark-Lewis, I. & Kent, S.B.H. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  Google Scholar 

  10. Muir, T.W., Sondhi, D. & Cole, P.A. Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA 95, 6705–6710 (1998).

    Article  CAS  Google Scholar 

  11. Dawson, P.E. & Kent, S.B.H. Synthesis of native proteins by chemical ligation. Annu. Rev. Biochem. 69, 923–960 (2000).

    Article  CAS  Google Scholar 

  12. Rostovtsev, V.V., Green, L.G., Fokin, V.V. & Sharpless, K.B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  13. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  Google Scholar 

  14. Nilsson, B.L., Kiessling, L.L. & Raines, R.T. Staudinger ligation: a peptide from a thioester and azide. Org. Lett. 2, 1939–1941 (2000).

    Article  CAS  Google Scholar 

  15. Galonić, D.P., van der Donk, W.A. & Gin, D.Y. Site-selective conjugation of thiols with aziridine-2-carboxylic acid-containing peptides. J. Am. Chem. Soc. 126, 12712–12713 (2004).

    Article  Google Scholar 

  16. Gamblin, D.P. et al. Glyco-SeS: selenenylsulfide-mediated protein glycoconjugation––a new strategy in post-translational modification. Angew. Chem. Int. Ed. 43, 828–833 (2004).

    Article  CAS  Google Scholar 

  17. Davis, B.G. Biochemistry. Mimicking posttranslational modifications of proteins. Science 303, 480–482 (2004).

    Article  CAS  Google Scholar 

  18. Schmidt, U., Lieberknecht, A. & Wild, J. Didehydroamino acids (DDAA) and didehydropeptides (DDP). Synthesis 159–172 (1988).

  19. Ranganathan, D., Shah, K. & Vaish, N. An exceptionally mild and efficient route to dehydroalanine peptides. J. Chem. Soc. Chem. Commun. 1145–1147 (1992).

  20. Blettner, C. & Bradley, M. Asparagine as a masked dehydroalanineresidue in solid-phase peptide-synthesis. Tetrahedron Lett. 35, 467–470 (1994).

    Article  CAS  Google Scholar 

  21. Burrage, S. et al. Biomimetic synthesis of lantibiotics. Chem. Eur. J. 6, 1455–1466 (2000).

    Article  CAS  Google Scholar 

  22. Okeley, N.M., Zhu, Y. & van der Donk, W.A. Facile chemoselective synthesis of dehydroalanine-containing peptides. Org. Lett. 2, 3603–3606 (2000).

    Article  CAS  Google Scholar 

  23. Hashimoto, K., Sakai, M., Okuno, T. & Shirahama, H. β-Phenylselenoalanine as a dehydroalanine precursor in the efficient synthesis of alternariolide (AM-toxinI). Chem. Commun. 1139–1140 (1996).

  24. Zhou, H. & van der Donk, W.A. Biomimetic stereoselective formation of methyllanthionine. Org. Lett. 4, 1335–1338 (2002).

    Article  CAS  Google Scholar 

  25. Zhu, Y., Gieselman, M., Zhou, H., Averin, O. & van der Donk, W.A. Biomimetic studies on the mechanism of stereoselective lanthionine formation. Org. Biomol. Chem. 1, 3304–3315 (2003).

    Article  CAS  Google Scholar 

  26. Ley, S.V., Priour, A. & Heusser, C. Total synthesis of the cyclic heptapeptide Argyrin B: a new potent inhibitor of T-cell independent antibody formation. Org. Lett. 4, 711–714 (2002).

    Article  CAS  Google Scholar 

  27. Snider, B.B. & Zeng, H. Total syntheses of (−)−fumiquinazolines C, E, and H. Org. Lett. 4, 1087–1090 (2002).

    Article  CAS  Google Scholar 

  28. Nicolaou, K.C., Zak, M., Safina, B.S., Lee, S.H. & Estrada, A.A. Total synthesis of thiostrepton, part 2: construction of the quinaldic acid macrocycle and final stages of the synthesis. Angew. Chem. Int. Ed. Engl. 43, 5092–5097 (2004).

    Article  CAS  Google Scholar 

  29. Seebeck, F.P. & Szostak, J.W. Ribosomal synthesis of dehydroalanine-containing peptides. J. Am. Chem. Soc. 128, 7150–7151 (2006).

    Article  CAS  Google Scholar 

  30. Kluskens, L.D. et al. Post-translational modification of therapeutic peptides by NisB, the dehydratase of the lantibiotic nisin. Biochemistry 44, 12827–12834 (2005).

    Article  CAS  Google Scholar 

  31. Chatterjee, C., Patton, G.C., Cooper, L., Paul, M. & van der Donk, W.A. Engineering dehydro amino acids and thioethers into peptides using lacticin 481 synthetase. Chem. Biol. 13, 1109–1117 (2006).

    Article  CAS  Google Scholar 

  32. Reich, H.J., Jasperse, C.P. & Renga, J.M. Organoselenium chemistry. Alkylation of acid, ester, amide, and ketone enolates with bromomethyl benzylselenide and sulfide: preparation of selenocysteine derivatives. J. Org. Chem. 51, 2981 (1986).

    Article  CAS  Google Scholar 

  33. Stocking, E.M., Schwarz, J.N., Senn, H., Salzmann, M. & Silks,, L.A. Synthesis of L-selenocystine, L-[se-77]selenocystine and L-tellurocystine. J. Chem. Soc. Perkin Trans. 1 2443–2447 (1997).

  34. Gieselman, M.D., Xie, L. & van der Donk, W.A. Synthesis of a selenocysteine-containing peptide by native chemical ligation. Org. Lett. 3, 1331–1334 (2001).

    Article  CAS  Google Scholar 

  35. Bhat, R.G., Porhiel, E., Saravanan, V. & Chandrasekaran, S. Utility of tetrathiomolybdate and tetraselenotungstate: efficient synthesis of cystine, selenocystine, and their higher homologues. Tetrahedron Lett. 44, 5251–5253 (2003).

    Article  CAS  Google Scholar 

  36. Siebum, A.H.G., Woo, W.S., Raap, J. & Lugtenburg, J. Access to any site-directed isotopomer of methionine, selenomethionine, cysteine, and selenocysteine––use of simple, efficient modular synthetic reaction schemes for isotope incorporation. Eur. J. Org. Chem. 2905–2913 (2004).

  37. Braga, A.L., Vargas, F., Sehnem, J.A. & Braga, R.C. Efficient synthesis of chiral beta-seleno amides via ring-opening reaction of 2-oxazolines and their application in the palladium-catalyzed asymmetric allylic alkylation. J. Org. Chem. 70, 9021–9024 (2005).

    Article  CAS  Google Scholar 

  38. Braga, A.L. et al. Chiral seleno-amines from indium selenolates. A straightforward synthesis of selenocysteine derivatives. J. Org. Chem. 71, 4305–4307 (2006).

    Article  CAS  Google Scholar 

  39. Still, C.W., Kahn, M. & Mitra, A. Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 43, 2923–2925 (1978).

    Article  CAS  Google Scholar 

  40. Han, Y., Albericio, F. & Barany, G. Occurrence and minimization of cysteine racemization during stepwise solid-phase peptide synthesis. J. Org. Chem. 62, 4307–4312 (1997).

    Article  CAS  Google Scholar 

  41. Jeffrey, P.D. & McCombie, S.W. Homogeneous, palladium(0)-catalyzed exchange deprotection of allyl esters, carbonates, and carbamates. J. Org. Chem. 47, 587–590 (1982).

    Article  CAS  Google Scholar 

  42. Besse, D. & Moroder, L. Synthesis of selenocysteine peptides and their oxidation to diselenide bridged compounds. J. Pept. Sci. 3, 442–453 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred A van der Donk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levengood, M., van der Donk, W. Dehydroalanine-containing peptides: preparation from phenylselenocysteine and utility in convergent ligation strategies. Nat Protoc 1, 3001–3010 (2006). https://doi.org/10.1038/nprot.2006.470

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.470

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing