Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Spectral karyotyping analysis of human and mouse chromosomes

Abstract

Classical banding methods provide basic information about the identities and structures of chromosomes on the basis of their unique banding patterns. Spectral karyotyping (SKY), and the related multiplex fluorescence in situ hybridization (M-FISH), are chromosome-specific multicolor FISH techniques that augment cytogenetic evaluations of malignant disease by providing additional information and improved characterization of aberrant chromosomes that contain DNA sequences not identifiable using conventional banding methods. SKY is based on cohybridization of combinatorially labeled chromosome-painting probes with unique fluorochrome signatures onto human or mouse metaphase chromosome preparations. Image acquisition and analysis use a specialized imaging system, combining Sagnac interferometer and CCD camera images to reconstruct spectral information at each pixel. Here we present a protocol for SKY analysis using commercially available SkyPaint probes, including procedures for metaphase chromosome preparation, slide pretreatment and probe hybridization and detection. SKY analysis requires approximately 6 d.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protocol timeline flowchart.
Figure 2: Effects of humidity and removal of excess cytoplasm by slide pretreatment on hybridization efficiency.
Figure 3: SKY imaging system.
Figure 4: Normal human male (46 chromosomes, XY) metaphase spread analyzed by SKY.
Figure 5: Metaphase spread from a human bladder cancer cell line hybridized with a SKY probe.
Figure 6: Mouse spectral karyotyping.
Figure 7: SKY karyotype of a metaphase spread from a pancreatoblastoma cell line.

Similar content being viewed by others

References

  1. Seabright, M. Rapid banding technique for human chromosomes. Lancet II, 971–972 (1971).

    Article  Google Scholar 

  2. Caspersson, T. et al. Chemical differentiation along metaphase chromosomes. Exp. Cell Res. 49, 219–222 (1968).

    Article  CAS  Google Scholar 

  3. Arrigghi, F.F. & Hsu, T.C. Localization of heterochromatin in human chromosomes. Cytogenetics 10, 81–86 (1971).

    Article  Google Scholar 

  4. Landegent, J.E. Jansen in de Wal, N., Dirks, R. W., Baas, F. & van der Ploeg, M. Use of the whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum. Genet. 77, 366–370 (1987).

    Article  CAS  Google Scholar 

  5. Pinkel, D. et al. Fluorescence in situ hybridization with human chromosome specific libraries: detection of trisomy 21 and translocation of chromosome 4. Proc. Natl. Acad. Sci. USA 85, 9138–9142 (1988).

    Article  CAS  Google Scholar 

  6. Cremer, T., Lichter, P., Borden, J., Ward, D.C. & Mannuelidis, L. Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum. Genet. 80, 235–246 (1988).

    Article  CAS  Google Scholar 

  7. Schröck, E. et al. Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497 (1996).

    Article  Google Scholar 

  8. Veldman, T., Vignon, C., Schrock, E., Rowley, J.D. & Ried, T. Hidden chromosome abnormalities in haematological malignancies detected by multicolour spectral karyotyping. Nat. Genet. 15, 406–410 (1997).

    Article  CAS  Google Scholar 

  9. Macville, M. et al. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res. 59, 141–150 (1999).

    CAS  PubMed  Google Scholar 

  10. Hilgenfeld, E., Padilla-Nash, H., Schrock, E. & Ried, T. Analysis of B-cell neoplasias by spectral karyotyping (SKY). Curr. Top. Microbiol. Immunol. 246, 169–174 (1999).

    CAS  PubMed  Google Scholar 

  11. Padilla-Nash, H.M. et al. Jumping translocations are common in solid tumor cell lines and result in recurrent fusions of whole chromosome arms. Genes Chromosom. Cancer 30, 349–363 (2001).

    Article  CAS  Google Scholar 

  12. Knutsen, T. et al. The interactive online SKY/M-FISH & CGH database and the Entrez cancer chromosomes search database: linkage of chromosomal aberrations with the genome sequence. Genes Chromosom. Cancer 44, 52–64 (2005).

    Article  CAS  Google Scholar 

  13. Speicher, M.R., Ballard, S.G. & Ward, D.C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet. 12, 368–375 (1996).

    Article  CAS  Google Scholar 

  14. Geigl, J.B., Uhrig, S. & Speicher, M.R. Multiplex-fluorescence in situ hybridization for chromosome karyotyping. Nat. Prot. 1, 1172–1184 (2006).

    Article  CAS  Google Scholar 

  15. Padilla-Nash, H.M. et al. Molecular cytogenetic analysis of the bladder carcinoma cell line BK-10 by spectral karyotyping. Genes Chromosom. Cancer 25, 53–59 (1999).

    Article  CAS  Google Scholar 

  16. ISCN: An International System for Human Cytogenetic Nomenclature (Shaffer, L.G. & Tommerup, N. (eds); S Karger, Basel, Switzerland, 2005).

  17. Barenboim-Stapleton, L. et al. Pediatric pancreatoblastoma: histopathologic and cytogenetic characterization of tumor and derived cell line. Cancer Genet. Cytogenet. 157, 109–117 (2005).

    Article  CAS  Google Scholar 

  18. Schröck, E. et al. Spectral karyotyping refines cytogenetic diagnostics of constitutional chromosomal abnormalities. Hum. Genet. 101, 255–262 (1997).

    Article  Google Scholar 

  19. Haddad, B.R. et al. Identification of de novo chromosomal markers and derivatives by spectral karyotyping. Hum. Genet. 103, 619–625 (1998).

    Article  CAS  Google Scholar 

  20. Ning, Y., Laundon, C.H., Schrock, E., Buchanan, P. & Ried, T. Prenatal diagnosis of a mosaic extra structurally abnormal chromosome by spectral karyotyping. Prenat. Diagn. 19, 480–482 (1999).

    Article  CAS  Google Scholar 

  21. Cotter, P.D. et al. Prenatal diagnosis of minute supernumerary marker chromosomes. Gynecol. Obstet. Invest. 60, 27–38 (2005).

    Article  CAS  Google Scholar 

  22. Schrock, E. et al. Spectral karyotyping of human, mouse, rat and ape chromosomes–applications for genetic diagnostics and research. Cytogenet. Genome Res. 114, 199–221 (2006).

    Article  CAS  Google Scholar 

  23. Muller, S. & Wienberg, J. “Bar-coding” primate chromosomes: molecular cytogenetic screening for the ancestral hominoid karyotype. Hum. Genet. 109, 85–94 (2001).

    Article  CAS  Google Scholar 

  24. Rens, W., Fu, B., O'Brien, P.C.M. & Ferguson-Smith, M. Cross-species chromosome painting. Nat. Prot. 1, 783–790 (2006).

    Article  CAS  Google Scholar 

  25. Buwe, A. et al. Multicolor spectral karyotyping of rat chromosomes. Cytogenet. Genome Res. 103, 163–168 (2003).

    Article  CAS  Google Scholar 

  26. Barkan, D., Montagna, C., Ried, T. & Green, J.E. Mammary gland cancer. in Mouse Models of Human Cancer (ed. Holland, E.C.) 103–131 (Wiley-Liss, Hoboken, New Jersey, 2004).

    Google Scholar 

  27. Liyanage, M. et al. Multicolour spectral karyotyping of mouse chromosomes. Nat. Genet. 14, 312–315 (1996).

    Article  CAS  Google Scholar 

  28. Weaver, Z. et al. Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 21, 5097–5107 (2002).

    Article  CAS  Google Scholar 

  29. Montagna, C. et al. The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res. 63, 2179–2187 (2003).

    CAS  PubMed  Google Scholar 

  30. Coleman, A.E. et al. Previously hidden chromosome aberrations in T(12;15)-positive BALB/c plasmacytomas uncovered by multicolor spectral karyotyping. Cancer Res. 57, 4585–4592 (1997).

    CAS  PubMed  Google Scholar 

  31. Barch, M., Knutsen, T. & Spurbeck, J. (eds.). The AGT Cytogenetics Laboratory Manual (Raven Press, New York, 1997).

  32. Telenius, H. et al. Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow sorted chromosomes. Genes Chromosom. Cancer 4, 257–263 (1992).

    Article  CAS  Google Scholar 

  33. Amplification of flow sort DNA using DOP-PRC (SKY). Laboratory of Thomas Ried Protocols http://www.riedlab.nci.nih.gov/protocols.asp (2005).

  34. DOP-PCR secondary (SKY). Laboratory of Thomas Ried Protocols http://www.riedlab.nci.nih.gov/protocols.asp (2005).

  35. DOP-PCR labeling (SKY). Laboratory of Thomas Ried Protocols http://www.riedlab.nci.nih.gov/protocols.asp (2005).

  36. McNamara, G., Difilippantonio, M.J. & Ried, T. Microscopy and image analysis. in Current Protocols in Human Genetics (ed. Miranker, L.) 4.4.1–4.4.34 (John Wiley & Sons, New York, 2005).

    Google Scholar 

Download references

Acknowledgements

We thank E. Schröck and M. Liyange for their input into the initial development of SKY for human and mouse, respectively, T. Knutsen for editing of the original SKY protocols and B. Chen and J. Cheng for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesed M Padilla-Nash.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padilla-Nash, H., Barenboim-Stapleton, L., Difilippantonio, M. et al. Spectral karyotyping analysis of human and mouse chromosomes. Nat Protoc 1, 3129–3142 (2006). https://doi.org/10.1038/nprot.2006.358

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.358

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing