Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Developing multiplexed SNP assays with special reference to degraded DNA templates

Abstract

This protocol describes a single nucleotide polymorphism (SNP) genotyping strategy for highly degraded DNA, using a two-stage multiplex whereby multiple fragments are first amplified in a single exponential reaction and the products of this PCR are added to a linear single-base-extension reaction. It utilizes the analytical power of a capillary electrophoresis system to simultaneously type all the target sites. The protocol is specifically written for use with severely fragmented templates, typical of ancient DNA, and can be adapted to widely used detection platforms. The addition of the single-phase genotyping step avoids the need for the re-amplification and cloning of PCR products, while providing its own controls for the detection of contamination and allelic drop-out. This protocol can facilitate the routine analysis of up to 52 SNP markers (haploid or diploid) in 96 samples in a single day, and is recommended for the authentication of data in all areas of DNA research (population and medical genetics, forensics, ancient DNA).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow diagram describing the steps of the multiplex protocol.
Figure 2: Examples of unacceptable primer-dimer formations that drastically reduce the primer concentration available for hybridization to the target sequence.
Figure 3: Analysis of 26 mtDNA SNPs by multiplex assay using 1,000 copies of ancient mtDNA from a typically degraded historic Asian sample (not able to generate amplicons above 161 bp in length).

Similar content being viewed by others

References

  1. Lindblad-Toh, K. et al. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nat. Genet. 24, 381–386 (2000).

    Article  CAS  Google Scholar 

  2. Hardenbol, P. et al. Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res. 15, 269–275 (2005).

    Article  CAS  Google Scholar 

  3. Anderson, E.C. et al. The power of single-nucleotide polymorphisms for large-scale parentage inference. Genetics 172, 2567–2582 (2006).

    Article  CAS  Google Scholar 

  4. Bandelt, H.J. Mosaics of ancient mitochondrial DNA: positive indicators of nonauthenticity. Eur. J. Hum. Genet. 13, 1106–1112 (2005).

    Article  CAS  Google Scholar 

  5. Römpler, H. et al. Multiplex amplification of ancient DNA. Nat. Protocols 1, 720–728 (2006).

    Article  Google Scholar 

  6. Syvänen, A.C. From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum. Mutat. 13, 1–10 (1999).

    Article  Google Scholar 

  7. Noonan, J.P. et al. Genomic sequencing of Pleistocene cave bears. Science 309, 597–599 (2005).

    Article  CAS  Google Scholar 

  8. Smith, C.I. et al. The thermal history of human fossils and the likelihood of successful DNA amplification. J. Hum. Evol. 45, 203–217 (2003).

    Article  Google Scholar 

  9. Quintans, B. et al. Typing of mitochondrial DNA coding region SNPs of forensic and anthropological interest using SNaPshot minisequencing. Forensic Sci. Int. 140, 251–257 (2004).

    Article  CAS  Google Scholar 

  10. Brandstätter, A. et al. Dissection of mitochondrial superhaplogroup H using coding region SNPs. Electrophoresis 27, 2541–2550 (2006).

    Article  Google Scholar 

  11. Rachlin, J. et al. Computational tradeoffs in multiplex PCR assay design for SNP genotyping. B.M.C. Genomics 6, 102 (2005).

    Google Scholar 

  12. Umetsu, K. et al. Multiplex amplified product-length polymorphism analysis of 36 mitochondrial single-nucleotide polymorphisms for haplogrouping of East Asian populations. Electrophoresis 26, 91–98 (2005).

    Article  CAS  Google Scholar 

  13. Pastinen, T. et al. Minisequencing: a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res. 7, 606–614 (1997).

    Article  CAS  Google Scholar 

  14. Sanchez, J.J. et al. Multiplex PCR and minisequencing of SNPs - a model with 35 Y chromosome SNPs. Forensic Sci. Int. 137, 74–84 (2003).

    Article  CAS  Google Scholar 

  15. Brion, M. et al. Introduction of an single nucleodite polymorphism-based “Major Y-chromosome haplogroup typing kit” suitable for predicting the geographical origin of male lineages. Electrophoresis 26, 4411–4420 (2005).

    Article  CAS  Google Scholar 

  16. Sanchez, J.J. et al. A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27, 1713–1724 (2006).

    Article  CAS  Google Scholar 

  17. McKay, S.J. et al. AcePrimer: automation of PCR primer design based on gene structure. Bioinformatics 18, 1538–1539 (2002).

    Article  CAS  Google Scholar 

  18. Kaplinski, L. et al. MultiPLX: automatic grouping and evaluation of PCR primers. Bioinformatics 21, 1701–1702 (2005).

    Article  CAS  Google Scholar 

  19. Rachlin, J. et al. MuPlex: multi-objective multiplex PCR assay design. Nucleic Acids Res. 33, 544–547 (2005).

    Article  Google Scholar 

  20. Yamada, T. et al. PrimerStation: a highly specific multiplex genomic PCR primer design server for the human genome. Nucleic Acids Res. 34, 665–669 (2006).

    Article  Google Scholar 

  21. Weckx, S. et al. SNPbox: web-based high-throughput primer design from gene to genome. Nucleic Acids Res. 32, 170–172 (2004).

    Article  Google Scholar 

  22. Rozen, S. et al. Primer3 on the WWW for general users and for biologist programmers. Meth. Mol. Biol. 132, 365–386 (2003).

    Google Scholar 

  23. Cooper, A. et al. Ancient DNA: do it right or not at all. Science 289, 1139 (2000).

    Article  CAS  Google Scholar 

  24. Pääbo, S. et al. Genetic analyses from ancient DNA. Annu. Rev. Genet. 38, 645–679 (2004).

    Article  Google Scholar 

  25. Vallone, P.M. et al. AutoDimer: a screening tool for primer-dimer and hairpin structures. Biotechniques 37, 226–231 (2004).

    Article  CAS  Google Scholar 

  26. Yuryev, A. et al. Predicting the success of primer extension genotyping assays using statistical modeling. Nucleic Acids Res. 30, 131 (2002).

    Article  Google Scholar 

  27. Kaderali, L. et al. Primer-design for multiplexed genotyping. Nucleic Acids Res. 31, 1796–1802 (2003).

    Article  CAS  Google Scholar 

  28. Henegariu, O. et al. Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23, 504–511 (1997).

    Article  CAS  Google Scholar 

  29. Doi, Y. et al. A new method for ABO genotyping using a multiplex single-base primer extension reaction and its application to forensic casework samples. Leg. Med. 6, 213–223 (2004).

    Article  CAS  Google Scholar 

  30. Palanichamy, M.G. et al. The dazzling array of basal branches in the mtDNA macrohaplogroup N from India as inferred from complete genomes. Mol. Biol. Evol. 23, 683–690 (2006).

    Article  Google Scholar 

  31. Behar, D. et al. The matrilineal ancestry of Ashkenazi Jews: portrait of a recent founder event. Am. J. Hum. Genet. 78, 487–497 (2006).

    Article  CAS  Google Scholar 

  32. Kivisild, T. et al. The role of selection in the evolution of human mitochondrial genomes. Genetics 172, 373–387 (2006).

    Article  CAS  Google Scholar 

  33. Bandelt, H.J. et al. More evidence for non-maternal inheritance of mitochondrial DNA? J. Med. Genet. 42, 957–960 (2005).

    Article  CAS  Google Scholar 

  34. Salas, A. et al. A practical guide to mitochondrial DNA error prevention in clinical, forensic and population genetics. Biochem. Biophys. Res. Commun. 335, 891–899 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J Sanchez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez, J., Endicott, P. Developing multiplexed SNP assays with special reference to degraded DNA templates. Nat Protoc 1, 1370–1378 (2006). https://doi.org/10.1038/nprot.2006.247

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.247

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing