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Outline of the talk

Introduction

Learning Machines: A Bottom-up Approach with a Network

Analysis of Networks

From Networks to Personalized Medicine
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Introduction
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The Interactomes

Molecular Networks

Protein-protein Interaction Networks

Metabolic Networks

Regulatory Networks - TF-gene Networks

Post-translational Networks - Kinase-substrate Networks

RNA Networks - TF-miRNA Networks, miRNA-gene Networks

Phenotypic Networks

Co-expression Networks

Genetic Networks

What is a Disease Network?
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Disease Genes (A Snapshot from 2007)

* Less than 10% of human genes are known to have association with
specific diseases [Barabási, 2011].
* Of these ∼19% are known to be oncogenes (November 16, 2011; Cancer
Genome Project).
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Learning Machines: A Bottom-up Approach with a Network
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A Framework of Co-expression Analysis

Co-expression

Differential Expression

Differential Co-expression

Co-expression Dynamics
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Co-expression

Definition

Pairwise similarity pattern (spatial or temporal) of expression vectors.

* Different statistical measures [Bandyopadhyay, 2011].
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Differential Expression

Definition

Varying patterns (spatial or temporal) of expression vectors in different
phenotypes.

* SAM, t-test, etc.
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Differential Co-expression

Definition

Pairwise varying dependence (spatial or temporal) between expression
vectors in different phenotypes.

* On/off case and gap/subsitution case [Dettling, 2005].
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Co-expression Dynamics

Definition

Pairwise varying dependence (spatial or temporal) between expression
vectors based on another expression vector.
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* [Li, 2002].
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Making Networks Robust by Integration

Supervised Approach

LLS = ln P(L|E)/∼P(L|E)
P(L)/∼P(L)

* P(L|E ) and ∼ P(L|E ) are the observed linkage frequencies of annotated
genes operating in the same and in different pathways, respectively,
whereas P(L) and ∼ P(L) are the prior annotations [Lee, 2004].

Unsupervised Approach

Wc(i , j) =
α

√
∑n

k=1 ξk(i , j)Wk(i , j)α
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Analysis of Networks
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Understanding the Diseasome

Hypotheses

* Degree: Disease biomolecules avoid hubs

* Modularity: Biomolecules specific to a disease form

modules

* Sharing: Diseases having common biomolecules show

phenotypic similarity

* Closeness: Causal pathways coincide with the connectors

of known disease-subnetworks
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Differential Co-expression to Module Finding
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Differentially Co-expressed Switching Tree
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How to Define an Association as Dense?

Density = 17/21 ∼ 0.81
Minimum participation density = 2/6 ∼ 0.33
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A Dense Module

Association density of a vertex

Given a weighted graph G = (V ,E ,Ω), the association density, µvi/VN , of

a vertex vi of G with respect to a vertexlet V N (such that vi /∈ V N), is
defined as the ratio of the sum of the edge weights between vi and each of
the vertices belonging to V N , and the cardinality of the set V N . Thus, the
association density of a vertex vi with respect to the vertexlet V N is

computed as µvi/VN =

∑
vj∈VN Ωvi vj

N
.

Association density of a vertexlet

The association density of a vertexlet V N is defined to be the minimum of
the association density of every vertex belonging to the vertexlet with
respect to the vertexlets of order (N − 1). So, the association density of a

vertexlet V N is given by µVN = minvi∈VN

(

µvi/VN−{vi}

)

.
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Regulatory Network Analysis

* [Ptak, 2008].

DBClique

A DBClique is a fully connected subgraph G ′ = (V ′
1,V

′
2,E

′) ⊆ G of a
directed bipartite graph G such that either i ∈ V ′

1, j ∈ V ′
2,∀(i , j) ∈ E ′ or

i ∈ V ′
2, j ∈ V ′

1,∀(i , j) ∈ E ′.
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Network Dynamics

Endogenous Exogenous

TF combinations complex simple

Path length long short

TF outdegree Low High

Significant motifs FFLs single input

TF interconnectedness High Low

Table: Topological properties of Networks.

* [Luscombe, 2004].
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Strengthening the Network Analysis

Activities of small RNAs

Transcriptional regulation of miRNAs
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From Networks to Personalized Medicine
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Drugs and Biomarkers

How?

- Prepare integrative network models
- Correlate network dynamics and states to the phenotype and patient
disease data
- Identify potential multi-node signatures

* A test case of cancer metastasis is proposed pursuing the ‘seed and soil’
principle [Erler, 2009].

More focus on aberrations and pathways

- Identify the genetic aberrations and the master regulators that drive
proliferation, survival, metastasis, and drug resistance
- Model the adaptive/feedback mechanisms that thwart the efficacy of
potent drugs
- Predict additional target pathways for combinatorial drug treatment

* [Ray, 2010, Pe’er, 2011].
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THANK YOU
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