From Machine Learning to Learning Machines - A Perspective toward Personalized Medicine

Malay Bhattacharyya

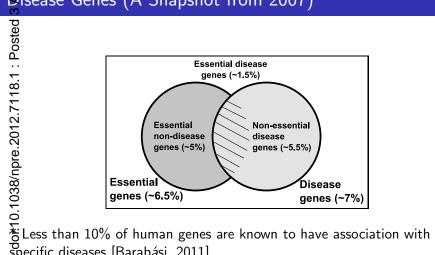
malay_r@isical.ac.in Machine Intelligence Unit, Indian Statistical Institute, Kolkata

Presented at C2B2, Columbia University

November 17, 2011

Introduction

- Learning Machines: A Bottom-up Approach with a Network
 - Analysis of Networks
 - From Networks to Personalized Medicine


Precedings : doi:10.1038/npre.20設.7118.1 : Posted 3 Apr point uoi

the Interactomes

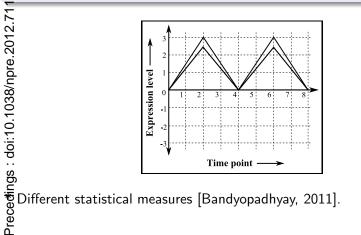
р вко Molecular Networks

- 20 Protein-protein Interaction Networks
 - Metabolic Networks
 - Regulatory Networks TF-gene Networks
 - Post-translational Networks Kinase-substrate Networks
- Protein-protein 1
 Metabolic Networks
 Regulatory Networks RNA Networks Chenotypic Networks RNA Networks - TF-miRNA Networks, miRNA-gene Networks
- Co-expression Net Co-expression Networks
- What is a Disease Network?

Disease Genes (A Snapshot from 2007)

specific diseases [Barab*á*si, 2011].

 SOF these ${\sim}19\%$ are known to be oncogenes (November 16, 2011; Cancer Genome Project).


$\frac{1}{2}$ Framework of Co-expression Analysis

- Co-expression
- Differential Expression
- Differential Co-expression
- Co-expression Dynamics

Co-expression

Definition

Bairwise similarity pattern (spatial or temporal) of expression vectors.

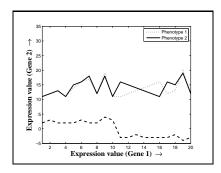
Differential Expression

7118.1 : Posted

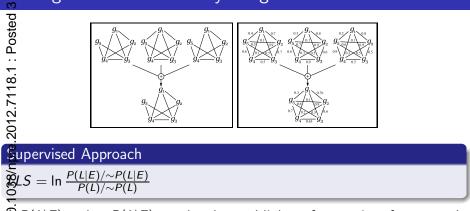
Definition

arying patterns (spatial or temporal) of expression vectors in different SAM, t-test, etc.

Differential Co-expression


Pairwise varying dependence (spatial or temporal) between expression On/off case and gap/subsitut

On/off case and gap/subsitution case [Dettling, 2005].

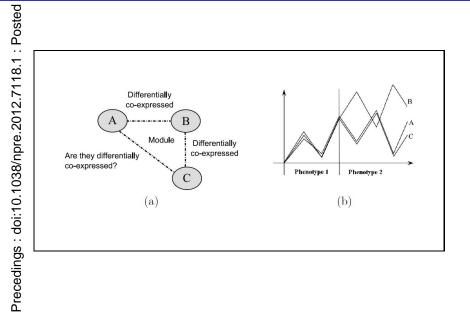

Eo-expression Dynamics

sted Definition

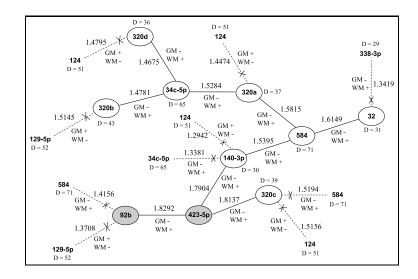
Pairwise varying dependence (spatial or temporal) between expression Sectors based on another expression vector. Vectors base Vectors Ve

Making Networks Robust by Integration

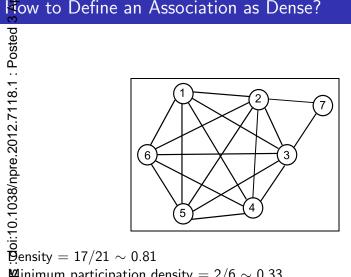
P(L|E) and $\sim P(L|E)$ are the observed linkage frequencies of annotated serves operating in the same and in different pathways, respectively, whereas P(L) and $\sim P(L)$ are the prior annotations [Lee, 2004].


Insupervised Approach

$$\Psi_c(i,j) = \sqrt[\alpha]{\sum_{k=1}^n \xi_k(i,j) W_k(i,j)^{\alpha}}$$




```
Degree: Disease biomolecules avoid hubs
                                   Modularity: Biomolecules specific to a disease form
Modularity: Biomolecules specific to a disease form
i modules
  Sharing: Diseases having common biomolecules show
  phenotypic similarity
  Closeness: Causal pathways coincide with the connectors
  of known disease-subnetworks
  Solution
  Solution
  Multiple Machine Learning Machines
  Machine Learning
  Machine
  Machine Learning
  Mac
```


Bifferential Co-expression to Module Finding

Bifferentially Co-expressed Switching Tree

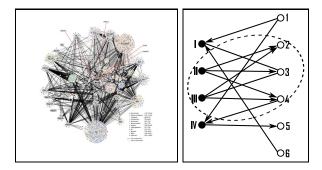
How to Define an Association as Dense?

Minimum participation density = $2/6 \sim 0.33$

Malay Bhattacharyya (MIU, ISI) Machine Learning to Learning Machines

A Dense Module

ad


Association density of a vertex

Given a weighted graph $G = (V, E, \Omega)$, the association density, μ_{v_i/V^N} , of evertex v_i of G with respect to a vertexlet V^N (such that $v_i \notin V^N$), is defined as the ratio of the sum of the edge weights between v_i and each of the vertices belonging to V^N , and the cardinality of the set V^N . Thus, the essociation density of a vertex v_i with respect to the vertexlet V^N is emputed as $\mu_{v_i/V^N} = \frac{\sum_{v_j \in V^N} \Omega_{v_i v_j}}{N}$.

Association density of a vertexlet

The association density of a vertexlet V^N is defined to be the minimum of the association density of every vertex belonging to the vertexlet with espect to the vertexlets of order (N-1). So, the association density of a vertexlet V^N is given by $\mu_{V^N} = \min_{v_i \in V^N} \left(\mu_{v_i/V^N - \{v_i\}} \right)$.

Regulatory Network Analysis

BClique

BDBClique is a fully connected subgraph $G' = (V'_1, V'_2, E') \subseteq G$ of a **\overline{\mathbf{a}}** rected bipartite graph G such that either $i \in V'_1, j \in V'_2, \forall (i, j) \in E'$ or $\overset{\mathbf{0}}{E} \in V'_2, j \in V'_1, \forall (i,j) \in E'.$

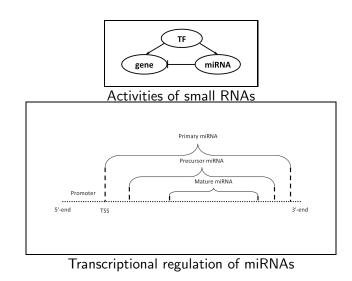
Malay Bhattacharyya (MIU, ISI)

Machine Learning to Learning Machines

November 17, 2011 19 / 26

	Endogenous	Exoge
TF combinations	complex	sim
Path length	long	sho
TF outdegree	Low	Hi
Significant motifs	FFLs	single
TF interconnectedness	High	Lc
Table: Topologica nbe, 2004].	l properties of Ne	tworks.
	Path length TF outdegree Significant motifs TF interconnectedness	EndogenousTF combinationscomplexPath lengthlongTF outdegreeLowSignificant motifsFFLsTF interconnectednessHighTable:Topological properties of Nenbe, 2004].

Exogenous


simple

short High

single input

Low

Strengthening the Network Analysis

grugs and Biomarkers

being the second second

-Prepare integrative network models

 $\overline{\overset{\mbox{\tiny CO}}{\overset{\mbox{\tiny CO}}}{\overset{\mbox{\tiny CO}}{\overset{\mbox{\tiny CO}}{\overset{\mbox{\tiny CO}}}{\overset{\mbox{\tiny CO}}{\overset{\mbox{\tiny CO}}{\overset{\mbox{\tiny CO}}}{\overset{\mbox{\tiny CO}}{\overset{\mbox{\tiny CO}}{\overset{\mbox{\tiny CO}}{\overset{\mbox{\tiny CO}}}{\overset{\mbox{\tiny CO}}{\overset{\mbox{\tiny CO}}{\overset{\mbox{\tiny CO}}}{\overset{\mbox{\tiny CO}}{\overset{\mbox{\tiny CO}}}{\overset{\mbox{\tiny CO}}{\overset{\mbox{\tiny CO}}}{\overset{\mbox{\tiny CO}}{\overset{\mbox{\tiny CO}}}{\overset{\mbox{\tiny CO}}}{\overset{\overset{\mbox{\tiny CO}}}{\overset{\mbox{\tiny CO}}}{\overset{\mbox{\tiny CO}}}{\overset{\$

Cildentify potential multi-node signatures

A test case of cancer metastasis is proposed pursuing the 'seed and soil' minciple [Erler, 2009].

Nore focus on aberrations and pathways

Fildentify the genetic aberrations and the master regulators that drive foliferation, survival, metastasis, and drug resistance

...Model the adaptive/feedback mechanisms that thwart the efficacy of Botent drugs

 $\frac{1}{2}$ Predict additional target pathways for combinatorial drug treatment

🖉 [Ray, 2010, Pe'er, 2011].

References

S. Bandyopadhyay and M. Bhattacharyya (2011) A Biologically Inspired Measure for Coexpression Analysis.

IEEE/ACM Trans Comput Biol Bioinform 8(4), 929 – 942.

A. Barabási, N. Gulbahce and J. Loscalzo (2011) Network medicine: a network-based approach to human disease. *Nat Rev Genet* 12, 56 – 68.

M. Dettling, E. Gabrielson and G. Parmigiani (2005) Searching for differentially expressed gene combinations. *Genome Biol* 6, R88.

J. T. Erler and R. Linding (2009)

Network-based drugs and biomarkers.

J Pathol 220(2), 290 - 296.

I. Lee *et al.* (2004) A probabilistic functional network of yeast genes. *Science* 306, 1555 – 1558.

References (continued)

K. Li (2002)

Genome-wide coexpression dynamics: Theory and application.

PNAS USA 99(26), 16875 - 16880.

N. M. Luscombe et al. (2004)

Genomic analysis of regulatory network dynamics reveals large topological changes. *Nature* 431, 308 - 312.

D. Pe'er and N. Hacohen (2011)

Principles and Strategies for Developing Network Models in Cancer. *Cell* 144, 864 – 873.

R. G. Ptak et al. (2008)

Cataloguing the HIV type 1 human protein interaction network.

AIDS Res Hum Retroviruses 24(12), 1497 – 1502.

M. Ray and W. Zhang (2010)

Analysis of Alzheimers disease severity across brain regions by topological analysis of gene co-expression networks.

BMC Syst Biol 4, 136.

THANK YOU