From Machine Learning to Learning Machines - A
Perspective toward Personalized Medicine

Malay Bhattacharyya
malay_r@isical.ac.in

Machine Intelligence Unit, Indian Statistical Institute, Kolkata

Presented at C2B2, Columbia University

November 17, 2011

Precedings : doi:10.1038/npre.2012.

Malay Bhattacharyya (MIU, ISI) Machine Learning to Learning Machines November 17, 2011



Cutline of the talk

@ Introduction
@ Learning Machines: A Bottom-up Approach with a Network
@ Analysis of Networks

@ From Networks to Personalized Medicine
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e Interactomes

oIecuIar Networks
> @ Protein- protein Interaction Networks

- @ Metabolic Networks

12 7118.1=Z Posted

@ Regulatory Networks - TF-gene Networks
’5.° Post-translational Networks - Kinase-substrate Networks
% @ RNA Networks - TF-miRNA Networks, miRNA-gene Networks
ghenotypic Networks
H @ Co-expression Networks
'c @ Genetic Networks
What is a Disease Network?
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Diisease Genes (A Snapshot from 2007)
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Essential disease
genes (~1.5%)

Essential Non-essential

non-disease disease
genes (~5%) genes (~5.5%)

Essential Disease
genes (~6.5%) genes (~7%)

Less than 10% of human genes are known to have association with
ecific diseases [Barabasi, 2011].

Of these ~19% are known to be oncogenes (November 16, 2011; Cancer
enome Project).
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arning Machines: A Bottom-up Approach with a Network
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" Framework of Co-expression Analysis

@ Co-expression
o Differential Expression
@ Differential Co-expression

@ Co-expression Dynamics
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Co-expression

8'(1

airwise similarity pattern (spatial or temporal) of expression vectors.

Expression level ——>

Time point ——>

Different statistical measures [Bandyopadhyay, 2011].
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%arying patterns (spatial or temporal) of expression vectors in different
enotypes.
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Liifferential Co-expression
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?)airwise varying dependence (spatial or temporal) between expression
@ctors in different phenotypes.

%On/off case and gap/subsitution case [Dettling, 2005].
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Co-expression Dynamics

Bairwise varying dependence (spatial or temporal) between expression
%ctors based on another expression vector.

. henotype 1
h 2
0 enotype

Expression value (Gene2) —

[Li, 2002].
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Making Networks Robust by Integration
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Supervised Approach
B/ 5 — In PULIE)/~P(LE)
=

P(L)/~P(L)

_QP(L]E) and ~ P(L|E) are the observed linkage frequencies of annotated
&nes operating in the same and in different pathways, respectively,
Whereas P(L) and ~ P(L) are the prior annotations [Lee, 2004].

insupervised Approach

g/c("aj) = VZZ:l gk(’af) Wk(iaj)a
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Uinderstanding the Diseasome
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iziypotheses

ﬁ Degree: Disease biomolecules avoid hubs

® Modularity: Biomolecules specific to a disease form

® modules

é%Sharing: Diseases having common biomolecules show
gjphenotypic similarity

Causal pathways coincide with the connectors
of known disease-subnetworks
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ential Co-expression to Module Finding

Differentially

co-expressed L
A
Cc

x“».\ Module 1 Differentially

Are they differentially i co-expressed

co-expressed? S e \
~ Phenotype 1 Phenotype 2

(a) (b)
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ntially Co-expressed Switching Tree
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FHow to Define an Association as Dense?

10.1038/npre.2012.7118.1 : Posted

Bensity = 17/21 ~ 0.81
Mlinimum participation density = 2/6 ~ 0.33
c
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A Dense Module
Assoaatlon density of a vertex

leen a weighted graph G = (V, E,Q), the association density, Fo; /YN of

a:vertex v; of G with respect to a vertexlet VN (such that v; ¢ VN), is
ﬁfeflned as the ratio of the sum of the edge weights between v; and each of
fhe vertices belonging to V", and the cardinality of the set VN. Thus, the

Sssociation density of a vertex v; with respect to the vertexlet VN s
! y

o ZV-EVN Q"i"j

@mputed as p, v = ——x——

38/

Association density of a vertexlet

%he association density of a vertexlet VN is defined to be the minimum of
The association density of every vertex belonging to the vertexlet with
gspect to the vertexlets of order (N — 1). So, the association density of a
c

.@ertexlet VN is given by pyn = min, cywn /.Lvl./\/N_{Vl_}).
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[<egulatory Network Analysis

1038/npre.2012.7118.1 : Posted

& [Ptak, 2008].
<
OBClique

& DBClique is a fully connected subgraph G’ = (V{, V4, E') C G of a
&rected bipartite graph G such that either i € V{,j € V3,V(i,j) € E' or
Bevijevivij)eF.

o
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Network Dynamics

‘ Endogenous ‘ Exogenous

TF combinations complex simple
Path length long short
TF outdegree Low High
Significant motifs FFLs single input
TF interconnectedness High Low

Table: Topological properties of Networks.

*0i:10.1038/npre.2012.7118.1 : Posted

*. [Luscombe, 2004].
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strengthening the Network Analysis
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Activities of small RNAs

Primary miRNA

N

/ Precursor miRNA

Mature miRNA ™
1
1

/—/%
] I

5-end TSS 3"-end

N

M

Promoter

Transcriptional regulation of miRNAs

Precedings : doi:10.1038/npre.2012.7118.1 : Posted

Malay Bhattacharyya (MIU, ISI) Machine Learning to Learning Machines November 17, 2011 21 /26



om Networks to Personalized Medicine
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Lirugs and Biomarkers

°

2Prepare integrative network models

EFO!CorreIate network dynamics and states to the phenotype and patient
fisease data

Eldentify potential multi-node signatures

o
gA test case of cancer metastasis is proposed pursuing the ‘seed and soil’
mrinciple [Erler, 2009].

“ore focus on aberrations and pathways

gldentify the genetic aberrations and the master regulators that drive
gyoliferation, survival, metastasis, and drug resistance
SModel the adaptive/feedback mechanisms that thwart the efficacy of

é@tent drugs
ﬁPredict additional target pathways for combinatorial drug treatment

(&)
£[Ray, 2010, Pe'er, 2011].
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