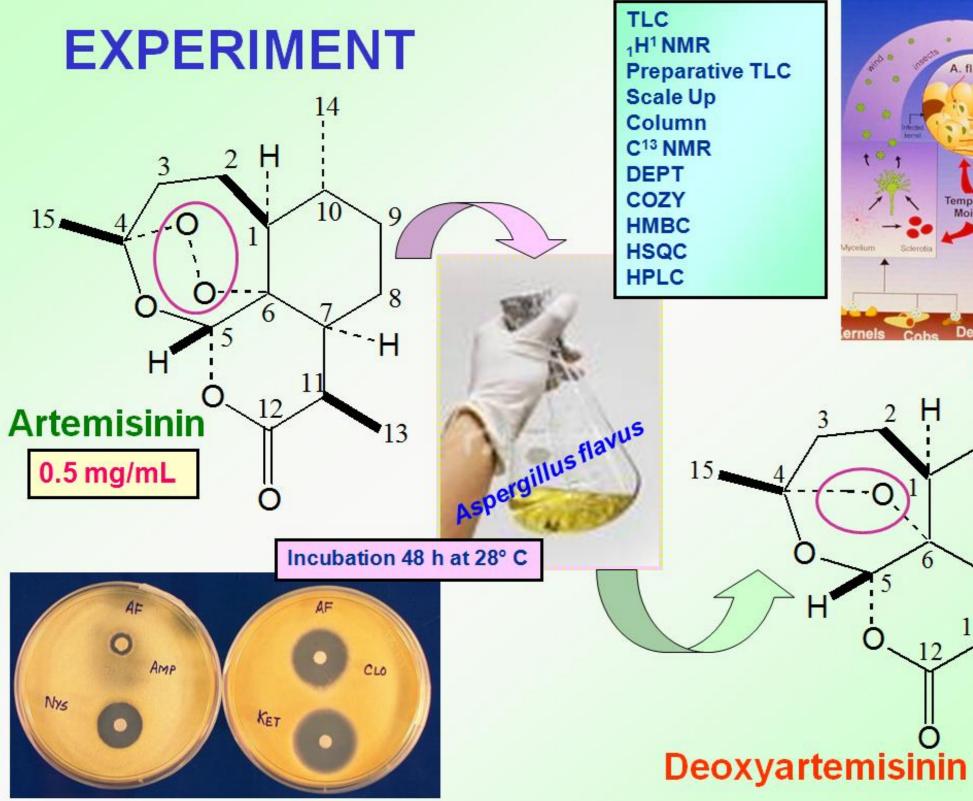
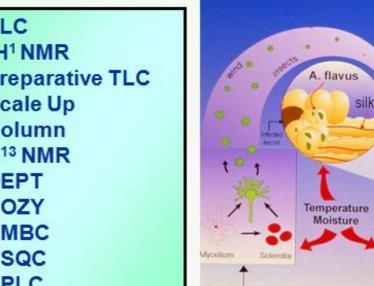
Biotransformation of artemisinin mediated through fungal strains for obtaining derivatives with novel activities

Suchita Srivastava¹, Suaib Luqman¹, Atiya Fatima², Mahendra P Darokar^{1*} Arvind S Negi², J K Kumar², K Shanker², Chandan S Chanotiya², Sudeep Tandon³, Suman PS Khanuja¹

¹Genetic Resources and Biotechnology Division, ²Analytical Chemistry Division, ³Process and Product Development

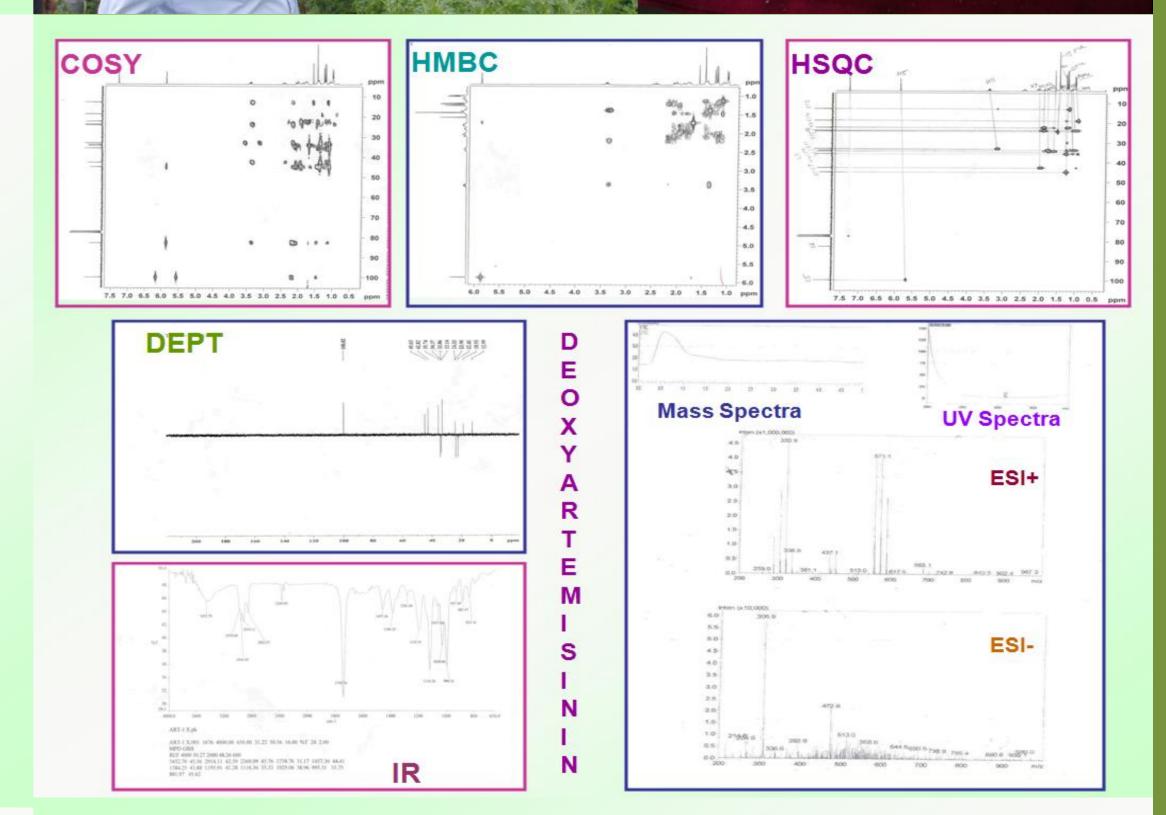

Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India.


INTRODUCTION

- **Biotransformation: Process of modifying any organic** compound into more water- soluble form using organisms
- It is an emerging field of biotechnology and both enzymatic and microbial encompasses biocatalysis
- Ecofriendly as they are less damaging to the environment than the chemical processes
- Microbial cells accepts a wide array of molecules as substrates yielding products with unparallel chiral, positional and chemical selectivity through various biochemical reactions.
- Microorganisms are exceptionally attractive models for studying fundamental life processes in vitro.

Artemisia annua

- A. annua L., is one of nearly 400 species of the Asteraceae family and commonly known as Sweet Wormwood, Sweet Annie, or Chinese wormwood.
- The herb is native to Asia but now grows in nature in many other countries in Europe and North America.
- Artemisia annua has chromosome number 2n=36 and having C value of 3.50 pg.
- Artemisinin is found in the glandular trichome of the leaves, stems, and inflorescences.
- lactone sesquiterpene artemisinin The accumulates to levels of 0.01–1% of dry weight.

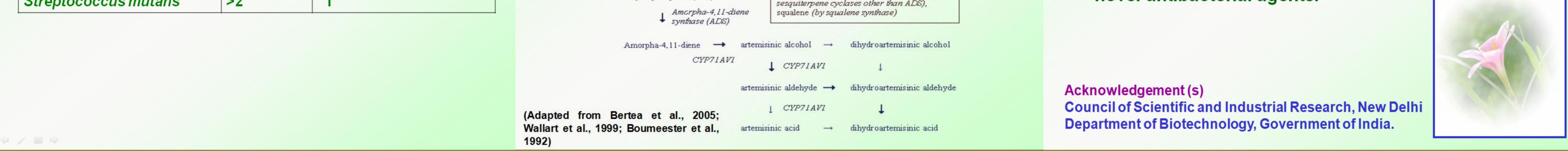


RESULTS Table 1: ¹H and ¹³C NMR data of 1 and 2 (both in CDCl₃, δ values) a,b

Assignment Artemisinin (1) Deoxyartemisinin (2) 13**C** 13**C** 1**H** 1**H** 50.17 1.27 (m) 1.40 (m) 45.10 1 2 1.47 (m), 2.03 (m) 22.43 1.23 (m), 1.88 (m) 24.87 1.59 (m), 1.77 (m) 2.43 (ddd), 2.07 (ddd) 34.41 3 35.96 105.32 109.51

Table 2:	Minimum inhibitory	concentra	tion (MIC) of artemi	sinin and
	deoxyartemisinin	against	Staphylococcus	aureus,
	Staphylococcus ep	idermidis a	nd S <i>treptococcus m</i>	utans.

Pathogenic Bacteria	Minimum Inhibitory Concentration (mg/ml)		
	Artemisinin	Deoxyartemisinin	
Staphylococcus aureus	>2	1	
Staphylococcus epidermidis	>2	1	
Streptococcus mutans	>2	1	


5	93.68	5.87 (s)	100.01	5.88 (s)
6	79.48		82.80	
7	45.05	1.77 (m)	42.88	2.44 (dt)
8	23.39	1.88 (m), 1.12 (m)	23.90	1.07 (m), 1.88 (m)
9	33.66	1.81 (m), 1.09 (m)	33.91	1.11 (m), 1.77 (m)
10	37.63	1.43 (m)	35.75	1.24 (m)
11	32.89	3.38-3.42 (qd)	33.13	3.39 (distorted quartet)
12	171.82		171.97	
13	12.49	1.23 (d, 7.2 Hz)	12.93	1.21 (d, 7.2 Hz)
14	19.74	0.99 (d, 6.0 Hz)	18.87	1.01 (d, J=6.0 Hz)
15	25.15	1.46 (s)	24.28	1.46 (s)

a Assignments are based on DEPT, 1H-1H COSY, HSQC and HMBC experiments. b Signal multiplicity and coupling constants (Hz) are in parentheses

Cytosol MVA pathway	Plastidial DXP pathway	
3 Acetyl-CoA	Pyruvate + Glyceraldehyde-3-phosphate	
Ţ	↓ DXP synthase	
S-Hydroxy-3-methylglutaryl-CoA (HMG-CoA)	1-Deoxy-D-xylulose-5-phosphate (DXP)	
↓ HMG-CoA reductase	↓ DXP reductoisomerase	
Mevalonate (MVA)	2-C-Methyl-Derythritol-4-phosphate (MEP)	
ţ		
sopentenyl diphosphate (IPP) and \rightarrow methylallyl diphosphate (DMAPP) \leftarrow	Isopentenyl diphosphate (IPP) and Dimethylallyl diphosphate (DMAPP)	
\downarrow FPP synthase	Ļ	
Geranyl diphosphate (GPP)	Monoterpenes, diterpenes, carotenoids	
↓ FPP synthase		
Farnesyl diphosphate (FPP) $\rightarrow \rightarrow \rightarrow$. Amcrpha-4.11-diene	Polyterpenes, triterpenes, sesquiterpenes (by sesquiterpene cyclases other than ADS), squalene (by squalene synthase)	
↓ Amcrpha-4,11-diene synthase (ADS)	-1	

CONCLUSION

- The formation of the deoxyartemisinin suggests that A. flavus has the potential to serve as a microbial model for generating metabolites of artemisinin and its related analogues for the structural identification and for further use in investigating pharmacological and toxicological properties
- The biological activity obtained with deoxyartemisinin provides preliminary information for the design of novel antibacterial agents.

