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Non-linear models with heteroscedasticity are commonly used in ecological and forestry modeling, 

and logarithmic regression and weighted regression are usually employed to estimate the 

parameters. Using the single-tree biomass data of three large samples, the bias correction in 

logarithmic regression for non-linear models was studied and comparison between logarithmic 

regression and weighted regression was discussed in this paper. Firstly, the immanent cause 

producing bias in logarithmic regression was analyzed, and a new correction factor was presented 

with which three commonly used bias correction factors were examined together, and the results 

showed that the correction factors presented here and derived by Baskerville (1972) should be 

recommended, which could insure the corrected model to be asymptotically consistent with that 

fitted by weighted regression. Secondly, the fitting results of weighted regression for non-linear 

models, using the weight function based on residual errors of the model estimated by ordinary least 

squares (OLS) and the general weight function (w=1/ƒ(x)2) presented by Zeng (1998) respectively, 

were compared with each other that showed two weight functions worked well and the general 

function was more applicable. It was suggested that the best way to fit non-linear models with 

heteroscedasticity would be using weighted regression, and if the total relative error of the 

estimates from the model fitted by the general weight function was more than a special allowance 

such as ±3%, a better weight function based on residual errors of the model fitted by OLS should 

be used in weighted regression. 

Keywords: non-linear model; biomass model; logarithmic regression; weighted regression; bias 

correction; heteroscedasticity 

 

1. Introduction 

Many models used in ecology and forestry are non-linear models, such as volume 

equations and biomass equations. The ecological and forestry models usually exhibit 

heteroscedasticity, that is, the error variance is not constant over all observations. To 

eliminate the influence of heteroscedasticity, it is necessary to estimate the parameters 

using logarithmic transformation or weighted regression
1-8

. 

Finney
1
 noticed early the problem of biased estimation from logarithmic 

transformation, and derived an unbiased estimator for bias correction. Baskerville
2
 

indicated that while the use of a logarithmic transformation was valid, the retransformation 

was to the median rather than the mean; and presented an unbiased estimate of the mean 

based on the sample variance s
2
, where the bias correction factor was exp(s

2
/2) which 

subsequently became widely used
6,9-12

. Beauchamp and Olson
13

 considered that the 

correction factor presented by Baskerville was still biased because of the sample variance 

s
2
 being only the unbiased estimate of population variance σ

2
 of which the true value was 

unknown, and then derived another correction factor expressed by Ψ(t) function. Flewelling 

and Pienaar
3
 reviewed all the kinds of bias correction factors, and presented some 

guidelines for the selection of estimators: for moderate to large sample sizes (usually more 

than 30), the maximum relative difference between any two estimates under most 

circumstances except extreme extrapolation is exp(3/2s
2
); and if this magnitude of error is 

not of consequence, any of the correction factors presented by Baskerville, Finney or 
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Beauchamp and Olson should be adequate; if the sample size is small, it is necessary to use 

more complicated estimators. Snowdon
4
 presented a ratio estimator for bias correction in 

logarithmic regressions, and concluded that the new method could give more reliable 

results than the methods presented by Baskerville and Finney respectively, and would be 

less sensitive to departures from the assumption of a lognormal distribution than the other 

two methods. 

In addition to logarithmic transformation, weighted regression was usually used to 

remove the influence of heteroscedasticity on parameter estimation. Zeng
14

 and Zeng et al
15

 

presented the general weighting function, that is w＝1/ƒ(x)
2
, based on the studies of 

heteroscedasticity of volume equations and biomass equations; Zhang et al
16

, Xu
17

 and 

Parresol
5-6

 all involved the studies of heteroscedasticity of biomass data, and presented 

some weighting functions. What is the difference between weighted regression and 

logarithmic regression? Which situation is the logarithmic regression suitable for? And 

what is the immanent cause producing bias in logarithmic regression? In this paper, based 

on the analysis of observed biomass data, the logarithmic regression of nonlinear models 

and the bias correction will be studied again at first; Secondly, relationship between 

logarithmic regression and weighted regression will be analyzed; and finally, conclusions 

and suggestions will be presented for regression estimation of nonlinear models in practice. 

 

2. Data and Method 

2.1. Data 

The data used in this paper are aboveground biomass data from destructive sampling, 

including three parts: (i) 132 sample trees collected by the South Term of the National 

Biomass Modeling Program in 1997 from the Lizhai Forest Farm of Dexing County in 

Jiangxi Province, involving Chinese fir (Cunninghamia lanceolata), Masson pine (Pinus 

massoniana), and several broadleaved species such as Quercus, Phoebe, and Cinnamomum. 

(ii) 237 sample trees collected in 2009 from the National Biomass Modeling Program for 

Continuous Forest Inventory (NBMP-CFI) involving two species, larch (Larix spp.) and 

Masson pine. The number of trees for larch is 119 which were located in four provinces of 

north-eastern China, and the number of trees for Masson pine is 118 which were located in 

nine provinces of southern China. (iii) 79 sample trees from published papers, involving 

two species: green weight data for 39 willow oak (Quercus phellos) trees from the State of 

Mississippi, USA
5
; green mass data for 40 slash pine (Pinus elliottii) trees from the State of 

Louisiana, USA
6
. The studies in this paper are mainly based on the first two parts of data 

(the statistics are listed in Table 1, and the relationship between aboveground biomass and 

tree diameter is showed in Fig.1), and the third part of data are served for additional 

analysis. 

Table 1. The statistics of above-ground biomass data 

Data sources 
Sample  

trees 
Variables Mean Max Min S.D. 

Mixed Species in Jiangxi, China 132 
Diameter at breast height/cm 13.2 25.6 5.0 5.7 

Above-ground biomass/kg 66.00 329.70 3.42 68.76 

Larch in North-Eastern China 119 
Diameter at breast height/cm 19.8 41.8 5.3 10.8 

Above-ground biomass/kg 213.16 847.66 3.99 227.58 

Masson pine in Southern China 118 
Diameter at breast height/cm 19.5 41.4 5.2 10.8 

Above-ground biomass/kg 197.34 797.05 4.08 222.47 
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Fig.1  Relationship between aboveground biomass and tree diameter 

2.2. Method 

To eliminate the influence of heteroscedasticity, it is usually to use logarithmic regression 

or weighted regression for the parameter estimation of nonlinear models in ecology and 

forestry. The simplest and most commonly used tree biomass model is the power function 

as follows: 

M=aD
b
+ε                               (2.1) 

where M is the tree biomass, D is the diameter at breast height, a, b are parameters, and ε is 

the error term. Eq. (2.1) was sometimes expressed as the following form
5： 

M=aD
b
ε                                (2.2) 

The error term in eq. (2.1) is additive, which usually means that ε is random, 

independent and normally distributed, and its variance is homoscedastic, that is, E(ε)=0 and 

Var(ε)=σ
2
. And, the error term in eq. (2.2) is multiplicative, which usually means that ε is 

dependent upon diameter and its variance is heteroscedastic. However, based on the 

expression of eq. (2.2), it will not be sound to take E(ε)=0 and Var(ε)=σ
2
, instead we should 

take E(ζ)=0 and Var(ζ)=σ’2 where ζ=ln(ε). For the sake of simplicity and un-confusion, we 

think that the power function of tree biomass can be expressed as eq. (2.1) whether the 

error variance is homoscedastic or heteroscedastic. If the variance of error term ε is 

heteroscedastic and the relative error ε’ has homoscedastic variance, then eq. (2.1) can be 

expressed as follows: 

M=aD
b
(1+ε’)                             (2.3) 

where ε’=ε/aD
b
. The logarithmic form is： 

lnM=lna+blnD+ln(1+ε’)                        (2.4) 

where ln is the natural logarithm. Eq.(2.4) seems to be equivalent to the following standard 

form of linear model: 

y=a0+b0x+ξ                              (2.5) 

where y=lnM, x=lnD, a0, b0 are parameters, and ξ is error term. Using the ordinary least 

squares (OLS) method to fit eq.(5), the estimate of biomass can be obtained by the 
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following equation: 

M̂ =exp(a0+b0lnD)                          (2.6) 

But in fact, this is not correct. Because using OLS method should meet the need that the 

mathematical expectation of error ξ be equal to zero, that is E(ξ)=0, but the mathematical 

expectation of the term ln(1+ε’) in eq. (2.4), corresponding to the error term ξ in eq. (2.5), 

is certainly not equal to zero, that is E[ln(1+ε’)]≠0. Let us discuss it in detail. 

Since the ε’ in eq. (2.3) is relative error, the theoretical distribution range is (-∞,+∞), 

and the empirical distribution range is usually between ±0.5. We assume that relative 

error ε’ is random, independent and normally distributed, and its variance is homoscedastic, 

then E(ε’)=0 and Var(ε’)=σ2
. Because ln(1+ε’) is always less than ε’, thus E[ln(1+ε’)]≠0, 

which should be equal to some negative value, assuming to be –c. We know the OLS 

estimation of eq. (2.5) must meet E(ξ)=0. Then, the parameters of eq. (2.4) and (2.5) have 

the following relationships: 

ξ=ln(1+ε’)+c                            (2.7) 

a0=lna- c                             (2.8) 

That is to say, to meet the need E(ξ)=0 of the OLS estimation for linear eq. (2.5) from 

logarithmic transformation, some part (i.e., c) of the value was separated from parameter a0 

to error term ξ, thus the parameter a0 would be underestimated. This is the immanent cause 

that the estimate of logarithmic regression needs to be corrected. Now, let us analyze the 

size of c-value which results in the bias directly. 

From eq. (2.7), we can obtain: 

1+ε’＝exp(ξ-c)＝exp(-c)exp(ξ)                    (2.9) 

Since E(ε’)=0, from the mathematical expectation of the two sides of eq. (2.9), we can 

obtain exp(-c)=1/E[exp(ξ)], then: 

exp(c)=E[exp(ξ)] = dttfx
k

k

k

)(
!

1

0






≈ dttftt )()5.01( 2

 = 1+0.5σ
2
 

That is to say, the estimate of c-value is nearly equal to ln(1+s
2
/2), where s is the 

standard error of estimate for eq. (2.5) fitted by the OLS method. From eq. (2.8), we known 

that the unbiased estimate of lna should be a0+c, then the corrected eq. (2.6) would be 

expressed as: 

M̂ =exp(a0+c+b0lnD)=(1+s
2
/2)exp(a0+b0lnD)               (2.10) 

It means that the bias correction factor is 1+s
2
/2. In this paper, we call it the first correction 

factor: 

CF1=1+s
2
/2                              (2.11) 

As for comparison, other three correction factors are considered: 

CF2=exp(s
2
/2)                             (2.12) 

CF3=exp{s
2
/2[1-s

2
(s

2
+2)/4n+s

4
(3s

4
+44s

2
+84)/96n

2
]}             (2.13) 

CF4=∑M/∑ M̂                             (2.14) 

where CF2 is the most commonly used correction factor which was presented by 

Baskerville
2；CF3 is the approximate expression of the correction factor g(s

2
/2) presented 

by Finney
1
; CF4 is the ratio correction factor presented by Snowdon

4
. 

Besides the afore-mentioned logarithmic regression, the weighted regression can be 

directly used to estimate the parameters of eq. (2.1) or (2.3). Three situations are 

considered: 

(i) the OLS method, being equivalent to the weighting function w=1; 

(ii) the weighted regression method using the general weighting function w=1/ƒ(D)
2
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which is the best weighting function if the relative error has homoscedastic variance; 

(iii) the weighted regression method using the special weighting function 1/1
c

Dw   

which is from the regression relationship between diameter D and residual squares (e
2
) of 

the OLS estimates, 1

0

2 c
Dce  , where c0, c1 are parameters. 

According to the analysis above, if we assume that the variance of errors is 

heteroscedastic and that of relative errors is homoscedastic, then the corrected estimate of 

logarithmic regression should be the same as the estimate of weighted regression based on 

the general weighting function. But the correction factors are approximate estimates, and 

the estimates of weighted regression for nonlinear models are also asymptotic values from 

iterative algorithm, so the two kinds of results are not exactly the same. 

To compare the results from logarithmic regression and weighted regression, five 

statistics are selected for evaluating the goodness-of-fit, which are mean error, mean 

absolute error, total relative error, average systematic error, and mean percent standard 

error. They are calculated as follows
5-6,15,18： 

ME= 



n

i

ii yy
n 1

)ˆ(
1

                          (2.15) 

MAE= 



n

i

ii yy
n 1

ˆ
1

                          (2.16) 

TRE= 100ˆ/)ˆ(
1 1

 
 

n

i

n

i

iii yyy                      (2.17) 

ASE= 



n

i

iii yyy
n 1

100ˆ/)ˆ(
1

                      (2.18) 

MPSE= 



n

i

iii yyy
n 1

100ˆ/ˆ
1

                      (2.19) 

where n is sample number, yi is observed value of biomass (i.e., M), iŷ  is estimated value 

of biomass (i.e., M̂ ). The smaller the values of statistics above, better the prediction of 

the models. 

 

3. Results and Analysis 

3.1 Logarithmic regression 

The single-tree aboveground biomass data mentioned in Table 1 were used in this paper. 

Firstly, convert the data of diameter D and biomass M into logarithmic forms; then through 

the procedure of regression analysis in Excel, eq. (2.5) was fitted by using the OLS method. 

Finally, based on the OLS estimates, four correction factors were calculated from eq. (2.11) 

to (2.14). The results are listed in Table 2. Then, according to eq. (2.15) to (2.19), the 

evaluation statistics of logarithmic regression model (2.5) and the corrected models were 

computed out, which are listed in Table 3. 
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Table 2. The fitting results of tree above-ground biomass models from logarithmic regression 

Data sources 
Sample Parameter estimates Fit statistics Correction factors 

number a0 exp(a0) b0 R
2
 s

2
 CF1 CF2 CF3 CF4 

Mixed Species in Jiangxi, China 132 -2.42611 0.088380 2.42929 0.90233 0.12901 1.06450 1.06663 1.06660 1.05761 

Larch in North-Eastern China 119 -2.41271 0.089573 2.46339 0.98685 0.03113 1.01556 1.01569 1.01568 0.98878 

Masson pine in Southern China 118 -2.63440 0.071762 2.50478 0.97675 0.05804 1.02902 1.02944 1.02944 1.01402 

 

Table 3. The evaluation statistics of tree above-ground biomass models from logarithmic regression 

Data sources CF ME MAE TRE ASE MPSE 

Mixed Species 

in Jiangxi, China 

CF0 3.60 17.52 5.76% 6.67% 30.91% 

CF1 -0.43 17.98 -0.65% 0.21% 29.95% 

CF2 -0.56 18.00 -0.85% 0.01% 29.92% 

CF3 -0.56 18.00 -0.84% 0.01% 29.92% 

CF4 0.00 17.92 0.00% 0.86% 30.02% 

Larch in 

North-Eastern China 

CF0 -2.42 26.51 -1.12% 1.58% 13.72% 

CF1 -5.77 26.62 -2.64% 0.02% 13.42% 

CF2 -5.80 26.63 -2.65% 0.01% 13.42% 

CF3 -5.80 26.63 -2.65% 0.01% 13.42% 

CF4 0.00 26.58 0.00% 2.73% 14.02% 

Masson pine 

in Southern China 

CF0 2.73 32.25 1.40% 2.87% 19.88% 

CF1 -2.92 32.67 -1.46% -0.03% 19.34% 

CF2 -3.00 32.68 -1.50% -0.07% 19.34% 

CF3 -3.00 32.68 -1.50% -0.07% 19.34% 

CF4 0.00 32.42 0.00% 1.45% 19.61% 

Note: Correction factor CF0=1 means the model not being corrected. 

 

It is shown in Table 3 that the biases of uncorrected models from logarithmic 

regression are not ignorable in some extent. The model for mixed species in Jiangxi was 

most typical, and the TRE and ASE of the fitted model reached to 5.76% and 6.67% 

respectively. However, the TRE of the model fitted with data for larch in North-eastern 

China was negative, that is, the estimated value was larger than the measured value, which 

probably resulted from the dissatisfactory sample structure. The correction factors CF2 and 

CF3 are almost the same, and are very close to CF1. So the evaluation statistics of the 

corrected models with the three factors almost have no difference, and the ASE’s are all 

close to zero (for model with homoscedastic variance of relative errors, the ASE is 

theoretically equal to zero), and the TRE’s are about ±3%. As for the model corrected by 

CF4, the ME and TRE are exactly equal to zero, the ASE reaches to about ±2%, and the 

other two statistics have no significant differences among the models. 

 

3.2 Weighted regression 

The eq. (8.1) was fitted by using nonlinear regression method through Marquardt iterative 

algorithm. For comparison, the OLS method was used at first; then the weighted regression 

method was used by using the two afore-mentioned weighting functions. The results are 

listed in Table 4. Then, according to eq. (2.15) to (2.19), the evaluation statistics of the 

OLS regression model (2.1) and the weighted regression models were computed out, which 

are listed in Table 5. In addition, the residual plot of aboveground biomass models by the 

OLS method is shown in Fig.2. 
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Table 4. The fitting results of tree above-ground biomass models from weighted regression 

Data sources 
Sample 

numbers 

Weighing 

functions 
Parameter estimates (t-values) Fit statistics 

w a b R2 s2 

Mixed Species 

in Jiangxi, China 
132 

1 
0.134835 

(2.45) 

2.30490 

(17.17) 
0.81644 867.95 

1/ƒ(D)2 
0.098586 

(5.43) 

2.41130 

(33.07) 
0.81536 873.08 

1/D3.90 
0.098995 

(4.93) 

2.40972 

(32.01) 
0.81541 872.85 

Larch in 

North-Eastern 

China 

119 

1 
0.252916 

(4.22) 

2.15767 

(32.16) 
0.95716 2218.41 

1/ƒ(D)2 
0.092345 

(12.56) 

2.45813 

(88.86) 
0.94383 2909.20 

1/D2.16 
0.141378 

(6.74) 

2.32523 

(53.49) 
0.95463 2349.83 

Masson pine 

in Southern China 
118 

1 
0.147935 

(3.47) 

2.29927 

(28.24) 
0.94764 2591.12 

1/ƒ(D)2 
0.076325 

(9.75) 

2.49284 

(69.64) 
0.94408 2767.92 

1/D3.72 
0.079449 

(7.65) 

2.47971 

(61.09) 
0.94488 2727.97 

Note: Weighting function w=1 means the OLS method being used. It is the same in Table 5. 

 

Table 5. The evaluation statistics of tree above-ground biomass models from weighted regression 

Data sources w ME MAE TRE ASE MPSE 

Mixed Species 

in Jiangxi, China 

1 -0.72 18.15 -0.98% -4.62% 29.82% 

1/ƒ(D)2 -0.12 17.95 -0.16% 0.00% 29.93% 

1/D3.90 -0.09 17.95 -0.12% -0.02% 29.93% 

Larch in 

North-Eastern 

China 

1 -3.81 27.19 -1.76% -13.65% 20.28% 

1/ƒ(D)2 -5.16 26.49 -2.36% 0.00% 13.42% 

1/D2.16 -0.02 25.61 -0.01% -4.80% 15.21% 

Masson pine 

in Southern China 

1 -2.89 32.07 -1.46% -10.73% 21.08% 

1/ƒ(D)2 -1.42 32.44 -0.72% 0.00% 19.34% 

1/D3.72 -0.55 32.24 -0.28% -0.34% 19.30% 

 

 

Fig.2  Residual plot of aboveground biomass models by the OLS method 
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It is obvious in Fig.2 that the residual errors, which were random and independent, 

increased with the growing diameter, and consequently exhibited heteroscedasticity. Then, 

the Park test
19

 was used to construct the following linear equation: 

lnε
2＝γ0＋γ1lnD＋δ                           (3.1) 

where ε is residual error of the OLS regression model, γ0 and γ1 are parameters. The t-test 

was utilized to examine whether or not the parameter γ1 in eq. (3.1) was equal to zero. The 

results showed that the estimates of parameter γ1 in eq. (3.1) for the three models by the 

OLS method in Table 4 were 3.90, 2.16 and 3.72 respectively, and the t-values were 11.66, 

6.59 and 12.38 respectively, which indicated that parameter γ1 was very significantly 

different from zero, and heteroscedasticity was obviously existed. 

In the nonlinear regression method, the nonlinear model is expressed with linear 

Taylor's series approximation, so it is not like the fitting result of linear model where the 

ME and TRE are both equal to zero. This feature is shown in Table 5. Because the influence 

of heteroscedasticity was not eliminated in the OLS method, the three models for w=1 have 

obvious systematic errors. For example, the ASE of the model fitted with data for larch in 

North-eastern China reached to -13.65%; even the smallest ASE of the model fitted with 

data for mixed species in Jiangxi also reached to -4.26%. But, the models estimated by 

weighted regression had no distinctive difference whether using the general or special 

weighting functions, where the ASE values were equal or close to zero (only the ASE value 

of the model fitted for larch in North-eastern China using special weighting function 

reached to -4.80%), and the TRE values were all less than ±3%. However, it is shown in 

Table 4 that the t-values of parameter estimates fitted with general weighting function were 

larger than those fitted with special weighting function, which meant that using general 

weighting function could eliminated the heteroscedasticity better, and obtained more 

reliable parameter estimates. Furthermore, from the comparison between Table 5 and Table 

3, it is shown that the fitting results from weighted regression with general weighting 

function were very close to those from logarithmic regression corrected by correction 

factors calculated from eq. (2.11) to (2.13), which is consistent with our expectation. 

 

4. Discussions 

It is well known that when a nonlinear model was transformed to linear logarithmic form 

and estimated by the OLS method, an inherent negative bias would produced. As for bias 

correction, many researchers have studied and presented several correction factors among 

which the correction factor exp(s
2
/2) recommended by Baskerville

2
 have being widely used 

in practice. Snowdon
4
 had some doubt on the applicability of the correction factor and 

recommended a simple ratio estimator for bias correction. In this paper, a new correction 

factor was derived from the analysis of logarithmic transformation, and comparison with 

the two commonly used correction factors was made based on three datasets of single-tree 

aboveground biomass. The results showed that the correction factors had no evident 

difference and the corrected models were similar to those fitted by weighted regression. 

The ratio estimator for bias correction recommended by Snowdon
4
 was also feasible and 

effective, but it was presented from another viewpoint, not from the property itself of 

logarithmic transformation. We suggest that the correction factors derived from the 

logarithmic transformation are used for bias correction which would result in consistent 

models with weighted regression. 

As for weighted regression, the key point is to determine the weighting function. 

According to the review paper by Parresol
5
, the commonly used approach is to fit a 

variance function with the OLS residuals. From the comparison between Table 4 and Table 

5, the estimates of weighted regression from general weighting function and special 
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weighting function based on the OLS residuals had no obvious difference, and the 

estimates from general weighting function were more reliable. The authors used the green 

weight data for 39 willow oak trees from Mississippi
5
 and for 40 slash pine trees from 

Louisiana
6
 to compare the fitting results of weighted regression for two weighting 

functions (see Table 6). 

 

Table 6. The comparison of fitting results of weighted regression for two weighting functions 

Data Models 
Using special weighting function (from Parresol) Using general weighting function (from Zeng) 

b0 b1 b2 R
2
 SEE b0 b1 b2 R

2
 SEE 

Willow oak 

n=39 

Wood 25.74948 0.02731  0.98 182.32 26.244 0.027307  0.98 182.31 

Bark -0.51532 0.10253  0.94 41.01 -0.35661 0.10241  0.94 41.01 

Crown 117.195 0.057502 -4.61687 0.81 21.15 104.68 0.056644 -4.0816 0.80 21.27 

Total 46.381 0.031558  0.98 217.37 52.653 0.031380  0.98 214.68 

Slash pine 

n=40 

Wood 0.016363 1.0585  0.98 27.44 0.016366 1.0585  0.98 27.44 

Bark 0.046277 2.2093  0.96 5.11 0.044298 2.2246  0.96 5.16 

Crown 0.027378 3.6804 -1.2624 0.89 14.22 0.033816 3.6536 -1.3139 0.89 14.42 

Note: (i) SEE is the standard error of estimate, that is the s in Table 2 and Table 4; (ii) The expression of models could be found in the Ref. 5 

and 6; (iii) The fitting results of weighted regression for special weighting function were directly cited from Ref. 5 and 6, except for R
2
 and 

SEE of slash pine which were calculated from the model parameters. 

 

It is obvious from Table 6 that the fitting results of weighted regression, whether 

using general weighting functions or special ones from Parresol
5-6

, were not very different 

from each other. As you know, it is not easy to derive the optimal weighting function from 

the OLS residuals. When the number of variables increases and the expression of model 

becomes more complicated, modeling the relationship between independent variables and 

the OLS residuals would be very difficult. For example, the weighting function of crown 

green weight model for willow oak presented by Parresol
5
 was complicated, which was 

expressed as: 

w=(D
2
H*LCL/1000)

1.646
*exp(-0.00406H

2
) 

where LCL is the live crown length, D is the diameter at breast height, and H is the tree 

height. The general weighting function (w=1/ƒ(x)
2
) derived from the model itself is simple 

and convenient in application, and is also the optimal one if the relative errors have 

homoscedastic variance, which should be applied to weighted regression estimation.  

From analyzing the criterion of parameter estimation, we know that it is the ME and 

TRE that would be equal to zero for the models from the OLS regression (for nonlinear 

models, they are not exactly equal to zero because of the linear Taylor's series 

approximation), and it is the ASE that would be zero for the models from the weighted 

regression with general weighting function. This feature is shown in Table 5. For a 

desirable dataset of samples or the fit data without obvious heteroscedasticity, both the TRE 

and ASE of the models should be close to zero, that is, the models from the OLS regression 

and weighted regression tend to be the same
15

. If we use the green weight data of willow 

oak published by Parresol
5
 for modeling, the TRE and ASE of the models from the OLS 

regression and weighted regression would be all less than ±0.5%, and the MPSE less than 

10%. Because it is generally difficult to obtain desirable data, the fitting results from the 

OLS regression and weighted regression would be different in some extent. When using 

weighted regression to estimate the model parameters, the general weighting function 

should be selected at first; if the TRE of the model is a bit large, for example exceeding ±

3%, then a special weighting function derived from the OLS residuals would be necessary 
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for the weighted regression. 

In addition, it should be pointed out that for the generalized models such as tree 

volume or biomass equations, the evaluation of models would not be limited to the 

statistics of the total sample. In general, the prediction effects in the range of size classes of 

independent variables should be taken into account. Thus, we usually need to evaluate the 

statistics of size classes, but here we would not like to discuss in detail. 

 

5. Conclusions 

Using the single-tree aboveground biomass data of three large samples, the 

logarithmic regression and bias correction of nonlinear models were studied, and the 

immanent cause producing bias in logarithmic regression was pointed out, and comparison 

between logarithmic regression and weighted regression was made. From the study, we can 

present the following conclusions: 

(i) For the nonlinear models exhibiting heteroscedasticity, they could be transformed 

to linear logarithmic forms and estimated by the OLS method, but bias correction is 

necessary. It is recommended to use the correction factors presented in this paper or 

presented by Baskerville
2
, which are derived from the property itself of logarithmic 

transformation, and can assure the corrected models to be consistent with those from the 

weighted regression. 

(ii) As for weighted regression, the key point is to determine the weighting function. 

From the comparison of weighted regressions between the commonly used special 

weighting function derived from the OLS residuals and the general weighting function 

presented by Zeng
14

, it is showed that the general weighting function has perfect 

applicability, produces more reliable parameter estimates, and is optimal if relative errors 

of the model have homoscedastic variance. In the case of estimating complicated model, 

the general weighting function will be more outstanding. 

(iii) Both logarithmic regression and weighted regression could be used to eliminate 

the influence of heteroscedasticity, and if the model from logarithmic regression was 

corrected properly, it would be almost the same as that from weighted regression. Thus, if 

the nonlinear model could be converted into linear logarithmic form, then not only 

weighted regression but also logarithmic regression can be used for parameter estimation. 

Since the application of nonlinear regression method is very common in ecology and 

forestry, for the nonlinear models exhibiting heteroscedasticity, it is recommended to use 

weighted regression directly with the general weighting function. If the TRE of the model 

from weighted regression with the general weighting function is a bit large, for example 

exceeding ±3%, then the reasons resulting in large TRE value should be analyzed, and a 

special weighting function derived from the OLS residuals may be necessary for the 

weighted regression. 
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