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Abstract 

Complement anaphylatoxin 5a (C5a) has been recognized as a potent therapeutic target for 

anti-inflammatory therapy, thus, blocking the action of C5a on its binding receptors may provide 

an effective treatment of a variety of inflammatory diseases. However, there have been few 

clinically available non-peptide C5a receptor antagonists disclosed at present. In pursuit of better 

anti-inflammatory drugs, quantitative structure–activity relationship studies were carried out in a 

series of non-peptide C5a receptor antagonists with binding activity using different 

physicochemical descriptors. The conventional best 2D-QSAR models were developed using a 

training set 35 molecules and an external test set of 8 molecules by genetic function 

approximation (GFA) and stepwise multiple linear regression (Stepwise-MLR) with acceptable r2 

of 0.773 and 0.863, r2
CV of 0.752 and 0.775, and r2

pred of 0.801 and 0.888, respectively, indicating 

binding activity strongly depends on thermodynamic properties as expressed by the 

hydrophobicity of molecules. 

Keywords: C5a receptor; Antagonist; Inflammation; Quantitative structure–activity 

relationship; Structural requirements  

 

Introduction 

Prolonged activation of the host defense human complement system of plasma proteins 
                                                        
∗∗ Corresponding author. Email: KX Chen, ckx_chem@163.com; ckx_zjzj@163.com 
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contributes significantly to amplifying the inflammatory and cellular responses to stimuli such as 

infectious microorganisms, chemical and physical injury, radiation, or neoplasia (Lama et al., 

1992; Finch et al., 1999), resulting in a cascade of proteolytic cleavages of complement proteins 

Cl-C5 (Vlattas et al., 1994; Wong et al., 1998), assembly of the membrane attack complex capable 

of cell lysis (Lama et al., 1992) and release of numerous complement-derived peptides of the 

anaphylatoxins of C3a, C4a and C5a that interact with cellular components to propagate the 

inflammatory process (Lama et al., 1992; Vlattas et al., 1994). Biological activities of these 

anaphylatoxins (Lama et al., 1992) include the cellular release of vasoactive amines and 

lysosomal enzymes, contraction of smooth muscle, and enhanced vascular permeability. Although 

broad features of complement activation are known, the details of pathogenesis remain largely 

unknown (Wong et al., 1998; Harkin et al., 2004). 

As is shown in literatures, C5a, a 74-amino acid peptide cleaved from C5 at sites of 

inflammation or infection during activation of the complement system (CS) (Blagg et al., 2008a, 

2008b), is a broad pro-inflammatory molecule that binds to G protein-coupled receptors CD88 

(C5aR) (Schnatbaum et al., 2006; Barbay et al., 2008). It has been recognized as a very potent 

inflammatory mediator generated during complement activation (Wong et al., 1998) and a 

causative or aggravating agent in a variety of inflammatory diseases including rheumatoid arthritis, 

inflammatory bowel disease, immune complex disease, reperfusion injury, Alzheimer’s disease, 

ischemic heart disease, and adult respiratory distress syndrome (ARDS) (Vlattas et al., 1994; 

Wong et al., 1998; Finch et al., 1999; Haas et al., 2005). It possesses additional chemotactic 

biological activities (Lama et al., 1992; Vlattas et al., 1994) that are mediated through specific 

receptor-ligand interactions, including an increase in Ca2+ mobilization, activation of neutrophil 

chemotaxis and aggregation, stimulation of leukotriene and oxidative product release, induction of 

interleukin-1 transcription by macrophages, enhanced antibody production, and other strong 

pro-inflammatory response. Thus, C5a is a very intriguing therapeutic target for anti-inflammatory 

therapy (Haas et al., 2005), blocking the action of C5a on its binding receptors may provide an 

effective treatment of a variety of inflammatory diseases (Lama et al., 1992; Arumugam et al., 

2004, Blagg et al., 2008a, 2008b). Considerable efforts have also been directed toward the 

discovery of small molecule drugs capable of blocking the complement C5aR response especially, 

but there have been few clinically available non-peptide C5a receptor antagonists disclosed 

(Astles et al., 1997; Schnatbaum et al., 2006). For these reasons, it is necessary and also urgent to 

further understand the C5a structural features important for receptor binding and activation 

(Vlattas et al., 1994; Finch et al., 1997). 

Computational chemistry has been applied widely in the pharmaceutical industry for drug 

discovery, lead optimization, risk assessment, toxicity prediction and regulatory decisions 
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(Sharma et al., 2008). Traditional computer-assisted quantitative structure–activity relationship 

(QSAR) studies pioneered by Hansch et al. (1962) provide a rational basis to establish the 

relationship between physiochemical properties and biological activity of molecules for better 

understanding the mechanisms of biological performance and show how to improve performance 

by altering chemical structures of ligands, which increase the probability of success and reduce the 

time and cost involved in the modern drug discovery process (Neaz et al., 2008). Besides, QSAR 

method save resources and expedite the process of the development of new molecules and drugs. 

There have been many QSAR researches related to modern drug design since it was first 

introduced. The aim of present work is to derive statistically some significant quantitative 

structure- activity relationship (QSAR) models for structural requirements of the binding affinity 

of some non-peptide C5a receptor antagonists, which would aid in search for the novel orally 

available non-peptide C5a receptor antagonists prior to synthesis.  

 

Materials and Methods 

Data set 

A data set of some small, non–peptide C5a receptor antagonists were taken from the 

published work (Blagg et al., 2008a, 2008b). Their C5a receptor binding activity data [125Binding 

affinity IC50 (nM)] were taken in molar (M) range and then converted into the corresponding 

logarithmic values (pIC50) according to the formula: pIC50 = -logIC50. Out of reported 54 

molecules, 11 molecules were discarded for which the precise data were not available. The 

remaining molecules (Table 1) were manually segregated into training (35 molecules) and test (8 

molecules) sets (Table 2) based on the suggestions by Oprea et al. (1994), maintaining the 

structural diversity and wide range of activity in both sets for the subsequent QSAR analysis.  

[Insert Table 1 and Table 2] 

Model building 

All computational experiments were performed using Cerius2 (version 4.10) running on 

Silicon Graphics O2 R5000 workstation. The molecular geometric structures were constructed 

using a 3D-sketcher in the Cerius2 Builder option and partial charges assigned using the Gasteiger 

method (Gasteiger and Marsili, 1980). Throughout the study, an energy minimization procedure 

named universal force field 1.02 (Rappe et al., 1992) was employed to generate the lower energy 

conformation for each molecule. All the structures were subsequently energy minimized until a 

root mean square derivation 0.001 kcal/ mol· Å was achieved and used in this study (Deokar et al., 

2008). 

 

Calculation of descriptors 
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Different types of physicochemical descriptors for each molecule were generated in the study 

table using default setting within QSAR+ module of Cerius2. There were total 242 nonzero 

descriptors including E-state-indices, Information_content, conformational, thermodynamic, 

topological, electronic, structural, and spatial descriptors. Before generating models, the 

inter-correlation of descriptors was considered and the descriptors with value over 0.7 were 

removed (Shen et al., 2004). Descriptors used for model generation are listed and described in 

Table 3. 

[Insert Table 3] 

Genetic function approximation (GFA) 

In the present study, genetic function approximation (GFA) was used to generate 2D-QSAR 

models (Kelkar et al., 2004; Deokar et al., 2008). GFA, developed by Rogers and Hopfinger 

(1994), was genetically involved in the combination of Fried machs multivariate adaptive 

regession splines (MARS) (Friedman, 1991) and Holland’s genetic algorithem (GA) (Holland, 

1975). It is a useful statistical analysis tool to correlate biological activity or property with 

molecular characteristic parameters, and also greatly improves the ease of successful model 

interpretation. The length of GFA derived equation was initially fixed to five terms including a 

constant suggested by Deokar et al. (2008). The population size was established as 100, the 

equation term was set to linear polynomial and the mutation probability was specified as 50%. 

After some preliminary runs for observations, GFA crossover of 10000 and smoothing parameter 

“d” value of 2.0 were set to give reasonable convergence. Other settings were maintained at their 

default values.  

 

Stepwise multiple linear regression (Stepwise-MLR) 

The stepwise multiple linear regression (Stepwise-MLR) procedure was also employed for 

the model selection on account of many descriptors used in this study. The multiple linear 

regression method with stepwise selection calculates QSAR equations by adding one variable at a 

time and testing each addition for significance (Jung et al., 2007). Only variables tested to be 

significant are finally used in the QSAR equation. This regression method is especially useful 

when the number of variables is large and the key descriptors for the activity are not known. The 

forward regression calculation mode was selected in this study because backward regression 

calculation can lead to overfitting. The maximum number of steps to be run in the calculation was 

set at 100, which can be specified to avoid hysteresis. F value of 4.000 was to evaluate the 

significance of a variable when a variable is added to or deleted from the equation. If the F value 

of a variable falls below a specified value, the variable is removed.  
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Results and discussion 

GFA-derived QSAR model 

The number of descriptors necessary and adequate in the GFA-derived QSAR equations was 

investigated in the beginning. As the conventional square correlation coefficient (r2) can be easily 

increased by number of terms in the equation, the cross-validated r2 (r2
CV) was selected as the 

limiting factor for the number of descriptors in the equation (Nair and Sobhia, 2008). As shown in 

Figure 1, the r2
CV value increases till the number of descriptors in the equation reaches up to 4 and 

r2
CV value starts decreasing as the number of descriptors increases further. Thus, the number of 

descriptors in the equation was restricted to 4 for the final model. The set of equations generated 

was evaluated on the following basis: 

a. Square correlation coefficient (r2) 

b. Friedman’s lack of fit score (LOF)  

c. Cross-validated r2 (r2
CV) 

d. External predictive power of the model (r2
pred) 

 

The statistically significant GFA-derived QSAR model with four descriptors below is shown:  

Model-I 

pIC50 = 1.97432 + 0.413266(Atype_C_25) + 0.15099(Atype_H_52) + 0.670423(AlogP)  

– 0.306762(logP) 

N(Training set) = 35, LOF = 0.174, r2 = 0.773, r2
adj = 0.743, F-text = 25.537, LSE = 0.104, r = 0.879, 

r2
CV = 0.752, r2

BS = 0.774, PRESS = 5.442, N(test set) = 8, r2
pred = 0.801 

 

where N(Training set) is the number of compounds in training set; LOF is Friedman’s lack of fit score 

(Deokar et al., 2008); r2 is the squared correlation coefficient; r2
adj is square of adjusted correlation 

coefficient; F-test is the variance related static; LSE is the least square error; r is the correlation 

coefficient; r2
CV is a squared correlation coefficient generated during the cross-validation 

procedure; Bootstrap r2 (r2
BS) (Deokar et al., 2008) is the average squared correlation coefficient 

calculated during the validation procedure; PRESS, predicted sum of deviation squares, is the sum 

of overall compounds of the squared differences between the actual and the predicted values for 

the dependent variables; N(test set) is the number of compounds in test set; r2
pred is the predictive 

power of the model.  

[Insert Figure 1] 

The inter-correlation of the descriptors appeared in the above best model was taken into 

account and the descriptors were found to be reasonably orthogonal. Main descriptor values 

appeared in the above 2D-QSAR model-I of training set and test set molecules are shown in Table 
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2. 

[Insert Table 4] 

The full cross-validation tests and randomization tests were employed to determine reliability 

and significance of these generated models. The full cross-validation tests (Fan et al., 2001) 

encompass the entire algorithm, including both the choice of descriptors and the optimization of 

regression coefficients. The full cross-validated r2 (r2
CV) was computed using the predicted values 

of the missing molecules by the models obtained from the remaining compounds in the data set. 

The results based on the rules of “leave-1-out”, “leave-2-out”, “leave-3-out”, “leave-4-out”, 

“leave-5-out”, “leave-6-out”, “leave-7-out”, “leave-8-out”, “leave-9-out” and “leave-10-out” are 

shown in Table 4, indicating the results obtained were not by chance correlation. The 

randomization tests (Deswal and Roy, 2006; Nair and Sobhia, 2008) were performed at 90% (9 

trials), 95 % (19 trials), 98 % (49 trials) and 99% (99 trials) confidence levels and carried out by 

repeatedly permuting the dependent variable set. The results of randomization tests in Table 5 

showed that none of the permuted data sets produced the random r comparable to nonrandom r of 

0.879, suggesting that the value obtained for the original GFA model was significant. The 

predictive power of the model-I was also evaluated by the external test set molecules. The 

predictive power of the model-I was calculated by r2
pred = (SD-PRESS)/SD (Deokar et al., 2008; 

Deswal and Roy, 2006; Nair and Sobhia, 2008), where SD is the sum of squared deviations 

between the pIC50 of each molecule and the mean pIC50 of the molecules in the training set and 

PRESS is the sum of squared deviations between the predicted pIC50 and actual pIC50 values for 

every molecule in the test set. The high r2
pred value of 0.801 for the test set accounted for good 

predictive ability. The developed QSAR model-I thus was robust and was found satisfactory for 

predicting the activities of the test set (Table 2). From Table 2, molecule 17 turned out to have 

high residuals because of their high activities in comparison to other compounds.  

[Insert Table 5 and Table 6] 

According to model-I, the observed C5a receptor binding activity for these non–peptide C5a 

receptor antagonists are principally influenced by Atype_C_25, Atype_H_52, AlogP and logP, 

which is confirmed by the maximum frequent usage of these descriptors during the formation of 

models (Table 6). All of these descriptors in model-I belong to thermodynamic character. LogP is 

the partition coefficient (Deswal and Roy, 2006), which represents the lipophilicity of molecule. 

The negative slope of logP in this equation represents that activity decreases with an increase in 

lipophilicity of molecule, which can be obviously shown in Table 2. Thus, substituents, which 

increase lipophilicity of compound, should be avoided. Descriptors of Atype_C_25 and 

Atype_H_52 are the atom type AlogP descriptors used to characterize the hydrophobicity (logP) 

of molecules. The atomic contribution of individual atom types was proposed by Ghose and 
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Crippen (1987) toward the overall hydrophobicity of molecules where carbon, hydrogen, oxygen, 

nitrogen, sulfur and halogens were classified into 120 atom types (Deswal and Roy, 2006; Nair 

and Sobhia, 2008). Hydrogen and halogens are classified by the hybridization and oxidation state 

of the carbon they are bonded to; carbon atoms are classified by their hybridization state and the 

chemical nature of their neighboring atoms. A total of 44 carbon types alone attest the complexity 

of the classification procedure. The positive slope of Atype_C_25 and Atype_H_52 in model-I 

represents that activity increases with an increase in lipophilicity related to C_25 and H_52 atom 

types for these molecules. The atom type C_25 (Ghose and Crippen, 1987; Nair and Sobhia, 2008) 

is C in :R--CR--R and Atype_H_52 is H that is unused where R represents any group linked 

through carbon and -- represents aromatic bonds as in benzene or delocalized bonds as the N-O 

bond in nitro group. Hydrophobicity associated with C atom as part of the aromatic ring or N-O 

bonded in nitro group is favorable for C5a receptor binding activity (pIC50).  

 

Stepwise-MLR-derived QSAR model 

The stepwise multiple linear regression (Stepwise-MLR) procedure was employed to 

correlate the variations of biological activities with the various physicochemical properties and 

select significant model by adding one variable at a time and testing each addition. The activity 

(pIC50) was expressed with acceptable statistical significance in model-II: 

 

Model-II 

pIC50 = 2.32669 + 0.635201(AlogP) – 0.422558(Atype_C_8) + (Atype_C_25)  

+ 0.181123(Atype_H_52) – 0.285327(logP) + 0.58861(Chiral Centers) 

+ 0.4322249(S_dssC) 

N(Training set) = 35, r2 = 0.863, F = 24.296, r = 0.929, r2
CV = 0.775, r2

BS =0.864, PRESS = 3.915,  

N(test set) = 8, r2
pred = 0.888 

 

where F is the value of ratio between regression and residual variances (Song et al., 2008). The 

inter-correlation of the descriptors appeared in the above best model was taken into account and 

the descriptors were found to be reasonably orthogonal. Model-II contains much more significant 

descriptors than model-1. The high r2
pred value of 0.888 for the test set accounted for good 

predictive ability. According to model-II, it can explain and predict 86.3% and 88.8% of 

descriptors, respectively, which can be proved in predicting the test set (Table 2). The residuals of 

model-II are also much smaller than that of model-I (Table 2). Thus the binding activity (pIC50) 

should be considered in terms of various descriptors in each molecule.  

Compared with model-I, model-II have the same descriptors of Atype_C_25, Atype_H_52 
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and AlogP with positive coefficients and logP with negative coefficient. According to model-II, 

the C5a receptor binding activity (pIC50) is also affected by the descriptors of Atype_C_8, Chiral 

Centers and S_dssC. The negative slope of Atype_C_8 represents that activity decreases with an 

increase in lipophilicity related to C_8 atom types for these molecules. The atom type C_8 (Ghose 

and Crippen, 1987) is C in :CHR2X where R represents any group linked through carbon and X 

represents any heteroatom (O, N, S, and halogens). Chiral Centers is the count of the number of 

chiral centers (R or S) present in a molecule. It is positively correlated with the binding activity, 

indicating the more Chiral Centers a molecule has, the high C5a receptor binding activity is. 

S_dssC is a descriptor of E-state-indices and represents the atomic type of Atomic-type =C﹤ in 

aliphatic hydrocarbon, where S stands for the sum of the E-state values for a given atom type in a 

molecule, d means double bonds and s means single bond. The E-state indices (Hall and Kier, 

1995) encode information about both the topological environment and the electronic interaction of 

an atom due to all other atoms in the molecule. Increasing presence of these features in a molecule 

contribute more towards binding activity. 

 

Conclusions 

On the basis of present study, it has been concluded that the described 2D-QSAR analysis 

contributes to the identification of important physiochemical parameters in explaining the 

variation in activity in a set of 43 molecules. The 2D-QSAR models derived by GFA method and 

Stepwise-MLR method have moderate internal and external predictivity, as shown by the values 

of r2
CV of 0.752 and 0.775, and r2

pred of 0.801 and 0.888, respectively, highlighting the importance 

of hydrophobicity of molecules. The statistical significance and robustness of the model has been 

confirmed by the full cross-validation tests and the randomization tests. Hence the model can be 

useful in the optimization of activity in this class of molecules, leading to further designing more 

novel orally available non-peptide C5a receptor antagonists. 

 

Abbreviations 

C5a, Complement anaphylatoxin 5a; C5aR, Complement anaphylatoxin 5a receptor; CS, 

Complement system; ARDS, Adult respiratory distress syndrome; QSAR, Quantitative 

structure-activity relationship; GFA, Genetic function approximation; LOF, Friedman’s lack of fit 

score; Stepwise-MLR, Stepwise multiple linear regression  
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Figures and Tables 

 

Figure 1. Plot of cross-validated r2 (r2
CV) as a function of the number of descriptors adequate in 

the final QSAR model 
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Table 1. Structures of non–peptide C5a receptor antagonists used in present QSAR study 
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                                       A series of piperidine analogues of compound 2 
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R1 N
R2

O
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(b) 

A series of benzothiophene analogues (13-20) and p-chloro-phenethylamine analogues (21-28) of 

compound 8 
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(c) 

α-Amido analogues of compound 43 

NO. R X NO. R X 

29 1-Naphthyl CO2Et 34 3-Benzo-thiophene C(O)Me 

30 3-Benzo-thiophene CO2Me 35 1-Naphthyl CH2NMe2 

31 2-Ethyl-Phenyl CO2H 36 2-Ethyl-Phenyl CH2NMe2 

32 2-Ethyl-Phenyl 

N
N

O

Me

 

37 2-Ethyl-Phenyl 

N

O

 

33 3-Benzo-thiophene CH2OMe 38 2-(2-Dimethylaminomethyl)-phenyl H 
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Some heterocyclic templates 
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NO. R X Y 

39 1-Naphthyl H CH2(p-Cl-Phenyl) 

40 3-Benzo-thiophene H CH2(p-Cl-Phenyl) 

41 3-Benzo-thiophene H CH2-cyclo-hexyl 

42 3-Benzo-thiophene Me CH2(p-Cl-Phenyl) 

O

N

Cl

OH  

Compound 43 

 

Table 2. Actual, predicted activities and main descriptors of training set and test set molecules 

 

Model-Ib Model-IIc No. 125Binding 

affinity 

IC50(nM) 

pIC50 

(M) Predicted Residuald Predicted Residuald 

AlogP logP 

1 1000 6.000 5.920 0.080 5.935 0.065 6.07 6.410 

2a 31 7.509 6.755 0.754 6.362 1.147 5.38 1.190 

3 330 6.481 6.620 -0.139 6.376 0.105 5.56 3.390 

4 200 6.699 7.125 -0.426 7.060 -0.361 6.44 4.650 

5 350 6.456 6.458 -0.002 6.610 -0.154 4.90 3.080 

6 70 7.155 7.023 0.132 6.753 0.402 4.69 2.750 

7 200 6.699 7.023 -0.324 6.753 -0.054 4.69 2.750 

8 75 7.125 6.994 0.131 7.000 0.125 5.07 1.710 

9 175 6.757 6.684 0.073 6.746 0.011 5.75 4.200 

10 370 6.432 6.448 -0.016 6.722 -0.290 5.84 3.210 

11 5 8.301 7.527 0.774 7.838 0.463 5.03 3.820 

12 200 6.699 6.760 -0.061 7.077 -0.378 4.09 3.290 
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13 1000 6.000 5.814 0.186 5.836 0.164 4.58 3.130 

14a 80 7.097 7.227 -0.130 7.238 -0.141 5.83 3.960 

15 835 6.078 6.819 -0.714 6.557 -0.479 4.72 3.120 

16 175 6.757 6.335 0.422 6.355 0.402 4.57 2.770 

17a 1.5 8.824 6.803 2.021 6.846 1.978 6.42 5.280 

18a 18 7.745 6.601 1.144 6.646 1.099 5.69 4.350 

19 400 6.398 6.731 -0.333 6.735 -0.337 4.52 2.710 

20 110 6.959 6.762 0.197 6.778 0.181 5.07 1.530 

21 300 6.523 7.049 -0.526 7.044 -0.521 5.47 2.110 

22 35 7.456 6.990 0.466 7.548 -0.092 4.20 -0.070 

23 395 6.403 6.245 0.158 6.170 0.233 5.98 2.730 

24 90 7.046 6.988 0.058 6.919 0.127 4.66 1.280 

25 435 6.362 6.134 0.228 6.065 0.297 4.92 -0.640 

26 5 8.301 7.764 0.537 8.112 0.189 4.51 -0.900 

27 89 7.051 7.009 0.042 6.942 0.109 3.83 -2.150 

28 290 6.538 6.934 -0.396 6.825 -0.287 3.83 -2.150 

29 3 8.523 8.476 0.047 8.398 0.125 5.94 1.610 

30 15 7.824 8.246 -0.422 8.027 -0.203 5.75 -0.880 

32 350 6.456 6.858 -0.402 6.450 0.006 5.43 2.940 

32 8 8.097 8.130 -0.033 8.191 -0.094 7.44 3.180 

33 12 7.921 7.654 0.267 7.762 0.159 5.89 1.350 

34 45 7.347 8.107 -0.760 8.112 -0.765 6.27 0.700 

35a 13 7.886 7.423 0.463 7.586 0.300 5.88 3.430 

36 27 7.569 6.797 0.772 6.993 0.576 5.74 3.720 

37a 200 6.699 6.704 -0.005 6.911 -0.212 5.45 3.490 

38 500 6.301 6.395 -0.094 6.434 -0.133 4.72 2.890 

39 90 7.046 7.055 -0.009 6.961 0.085 6.53 5.060 

40 500 6.301 7.074 -0.773 6.954 -0.653 6.45 3.480 

41a 47 7.328 6.361 0.967 6.264 1.064 6.12 3.750 

42a 90 7.046 7.055 -0.009 6.938 0.108 6.62 3.915 

43 125 6.903 7.226 -0.323 6.964 -0.061 5.45 5.100 

a Molecules used in the test set.  

b Model-I is the best model generated by GFA method 

c Model-II is the best model generated by Stepwise-MLR method 

d Residual = Actual pIC50 - Predicted pIC50 
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Table 3. Descriptors used for building 2D-QSAR models 

 

Type Descriptors 

E-state-indices Electrotopological-state indices 

Spatial Radius of gyration, principal moment of inertia, shadow indices molecular surface 

area, density, molecular volume, molecular area  

Electronic Sum of atomic polarizabilities, dipole moment, energy of highest occupied orbital 

(HOMO), energy of lowest unoccupied orbital (LUMO), superdelocalizability 

Thermodynamic Ghose and Crippen molar refractivity, heat of formation, log of the partition 

coefficient, log of the partition coefficient atom type value, desolvation free energy 

for water, desolvation free energy for octanol 

Structural Number of chiral centers, number of rotatable bonds, number of hydrogen-bond 

donors, number of hydrogen-bond acceptors, molecular weight 

Conformational The energy of the currently selected conformation 

Information_content Multigraph information content indices, information of atomic composition index 

Topological Kier and Hall molecular connectivity index, Hosoya index, molecular flexibility 

index, Balaban indices, Zagreb index, Logarithm of Hosoya index 

 

 

 

Table 4. Results of full cross-validation tests for 2D-QSAR models generated by GFA method 

 

Rule PRESS Sum of sq dev. r2
CV 

Leave-1-out 5.442 2.135 0.752 

Leave-2-out 5.421 2.135 0.754 

Leave-3-out 5.615 2.135 0.726 

Leave-4-out 5.513 2.135 0.736 

Leave-5-out 5.694 2.135 0.764 

Leave-6-out 5.236 2.135 0.746 

Leave-7-out 5.789 2.135 0.750 

Leave-8-out 5.134 2.135 0.761 

Leave-9-out 5.394 2.135 0.746 

Leave-10-out 5.264 2.135 0.765 
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Table 5. Results of randomization tests for 2D-QSAR models generated by GFA method 

 

Randomization test: 

Confidence level 90%  95% 98% 99% 

Total trials  9 19 49 99 

r from non-random 0.879 0.879 0.879 0.879 

Random r′s< non-random 9 19 49 99 

Random r′s> non-random 0 0 0 0 

Mean of r from random trial 0.550 0.534 0.587 0.512 

Standard deviation of random trials 0.051 0.059 0.067 0.045 

Standard deviation from non-random r to mean 4.263 4.169 4.255 4.124 

 

Table 6. Frequency distribution of the variables  

 

Descriptor Frequency 

AlogP 86 

logP 75 

Atype_H_52 46 

Atype_C_25 25 

Chiral Centers 19 

S_dssC 15 

S_aaCH 11 

Atype_O_59 9 
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