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Abstract 

 

 Activated neutrophils can cause oxidant-mediated bystander injury to host cells.  

This injury has previously been ascribed to the direct effects of oxidants on membrane 

phospholipids.  We show here that oxidants released by neutrophils activated in vivo in 

survivors of multiple trauma or in vitro by exposure to bacterial lipopolysaccharide (LPS) 

can also promote the apoptotic death of epithelial cells, through the SHP-1-mediated 

dephosphorylation of epithelial cell caspase-8.  Neutrophils from a cohort of patients who 

sustained serious injury induced the apoptotic death of cultured epithelial cells in a 

manner that was dependent on the activity of the NADPH oxidase and the generation of 

neutrophil-derived reactive oxygen intermediates.  Caspase-8 is constitutively tyrosine 

phosphorylated in a panel of resting epithelial cells, but undergoes dephosphorylation in 

response to hydrogen peroxide (H2O2), activated neutrophils, or inhibition of Src kinases.  

Mutation of either of 2 key caspase-8 tyrosine residues, Y397 and Y465 to a non-

phosphorylatable phenylalanine accelerates the apoptosis of epithelial cells transfected 

with caspase-8, while mutation of the same tyrosine residues to the phosphomimetic 

glutamic acid, or transfection with the Src kinases Lyn or c-Src inhibits H2O2-induced 

apoptosis.  Exposure to either H2O2 or LPS-stimulated neutrophils, increases the 

phosphorylation and activity of the phosphatase SHP-1, increases the activity of 

caspases-8 and -3, and accelerates epithelial cell apoptosis.  Together these data reveal a 

novel mechanism for neutrophil-mediated tissue injury through oxidant-dependent SHP-

1-mediated dephosphorylation of caspase-8 resulting in enhanced epithelial cell apoptosis. 
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 Acutely ill patients sustaining severe traumatic injuries develop abnormalities of 

systemic immunologic and metabolic homeostasis that result in impaired physiologic 

organ function and enhanced susceptibility to infectious complications.  Prominent 

among these abnormalities are systemic neutrophil activation 1 and increased apoptosis of 

epithelial cells and lymphocytes 2.  The mechanisms underlying the increased cellular 

apoptosis in acutely ill patients are poorly characterized.  Augmented circulating levels of 

soluble Fas ligand 3, 4 and reduced cellular activity of Bcl2 5 have been implicated in 

experimental models.  Increased local neutrophil influx is a characteristic finding, and has 

been hypothesized to play a contributory role 6. 

 

 Activated neutrophils are implicated in the pathogenesis of inflammatory tissue 

injury 1, 7-9.  Tissue damage has been attributed to direct cellular injury by neutrophil 

proteases such as elastase 10, or to the effects of neutrophil-derived oxidants on lipids in 

cell membranes, resulting in the necrotic death of the target cell 11.  However extensive 

necrotic cell death is uncommon in tissues from patients suffering the sequelae of 

traumatic injury 12, and experimental inflammatory lung injury is characteristically 

accompanied by evidence of concomitant activation of apoptosis 13, 14.  The potential for 

neutrophils to induce apoptotic cell death has received little attention, although oxidants 

such as superoxide anion and hydrogen peroxide – products of the neutrophil NADPH 

oxidase – are potent stimuli for the induction of apoptosis 15, and in vitro exposure of 

A549 lung epithelial cells to hydrogen peroxide evokes a complex transcriptional 

response, activating pathways leading to cell cycle arrest, activation of p53, and increased 

activity of caspase-3 16. 



 

 The catalytic activity of the apical caspase of the extrinsic pathway of apoptosis, 

caspase-8, is regulated through the phosphorylation of two key tyrosine residues at Y397 

and Y465 17, 18.  Caspase-8 contains an immunoreceptor tyrosine-based inhibition motif  

(ITIM)-like domain (IxYxxL)19 at Y310 in the p18 active fragment of the enzyme20.  

Binding of  the membrane-associated tyrosine phosphatase SHP-1 to this motif results in 

SHP-1 mediated dephosphorylation of tyrosine residues at Y397 and Y465, followed by 

activational cleavage of caspase-8, activation of caspase-3, and the progression of 

apoptosis 18.  We hypothesized that oxidants from activated neutrophils might regulate 

the caspase-8 phosphorylation state in epithelial cells, and so alter their survival.  Here 

we show that neutrophils harvested from patients who have sustained multiple trauma can 

induce the apoptotic death of cultured epithelial cells through the activation of the 

NADPH oxidase and the generation of reactive oxygen intermediates.  Exposure of 

epithelial cells to either activated neutrophils or hydrogen peroxide (H2O2) results in 

increased activity of the phosphatase SHP-1, which in turn dephosphorylates caspase-8 

and activates the extrinsic pathway of apoptosis.  These observations reveal a novel 

mechanism through which neutrophils can induce cellular injury during acute 

inflammation.  

 

Results 

Trauma Neutrophils Trigger the Oxidant-dependent Apoptosis of Cultured Epithelial 

Cells 



 We studied eight trauma patients at a mean of 3 days following injury; 

demographic characteristics are summarized in Table 1.  Co-culture of patient neutrophils 

with subconfluent cultures of A549 or HEK293 epithelial cells resulted in increased 

epithelial cell apoptosis reflected in increased hypodiploid DNA in permeabilized cells, 

detected by flow cytometry as the uptake of propidium iodide (Fig. 1a).  Enhanced 

apoptosis was accompanied by reduced tyrosine phosphorylation of caspase-8 (Fig. 1b) 

and increased cleavage of pro-caspase-8 to its active p10 and p18 moieties (Fig. 1c).  To 

probe the potential role of neutrophil-derived oxidants in this accelerated apoptotic death, 

we treated trauma patient neutrophils with diphenylene iodonium (DPI, 10 μM), an 

inhibitor of the NADPH oxidase, catalase (10 μg/ml) to enhance the degradation of H2O2, 

or the antioxidant glutathione (10 μM); each increased caspase-8 tyrosine 

phosphorylation (Fig. 1b), increased caspase-8 cleavage (Fig. 1c), and attenuated the pro-

apoptotic effects of trauma neutrophils (Fig. 1d), suggesting a mechanism involving 

neutrophil-derived oxidants.   

 

Activated Neutrophils Induce Epithelial Cell Apoptosis 

 We used co-cultures of a panel of epithelial cells and neutrophils from healthy 

human donors activated in vitro by inflammatory stimuli to study the mechanism of 

neutrophil-mediated epithelial cell apoptosis.  Co-culture of A549 lung epithelial cells 

with neutrophils alone resulted in modestly increased rates of apoptosis measured as 

hypodiploid DNA in permeabilized cells (Fig. 2a) or as binding of exteriorized 

phosphatidyl serine (Fig. 2b).  Activation of neutrophils by LPS (1 μg/mL) resulted in 

significantly increased rates of A549 cell apoptosis when compared with quiescent 



neutrophils alone.  LPS alone had no effect on epithelial cell survival.  The A549 cell line 

was derived from a human lung carcinoma 21.  To determine whether PMN could induce 

the apoptotic death of primary, non-transformed cells, we repeated these studies in a 

primary human distal airway cell line, BEAS-2B, and in human embryonic kidney (HEK-

293) cells.  Similar results were obtained (data not shown).   

 

Transfection of wild-type caspase-8 into A549 cells led to increased DNA 

cleavage (Fig. 2c);  transfection of A549 cells with a cleavage resistant mutant caspase-8 

C377S 22 led to apoptosis rates that did not differ from those of non-transfected cells, or 

cells transfected with empty vector (Fig. 2c), confirming that caspase-8 activation is 

sufficient to induce epithelial cell apoptosis. 

 

The Caspase-8 Phosphorylation State Regulates Epithelial Cell Survival 

 Caspase-8a can be phosphorylated on Y397 (corresponding to Y380 in caspase-

8b) and Y465; phosphorylation renders caspase-8 resistant to autocatalytic cleavage, and 

so inhibits the progression of apoptosis that has been initiated through the extrinsic 

pathway 17, 18.  Caspase-8 is tyrosine phosphorylated in resting A549 cells (Fig. 3a).  The 

addition of LPS, 1 μg/ml, to cultures had no effect on the phosphorylation state of 

caspase-8, whereas TNFα (50 ng/ml) or an agonistic anti-Fas antibody (100 ng/ml) – 

agents that induce A549 cell apoptosis (data not shown) - resulted in moderate caspase-8 

dephosphorylation (Fig. 3a).  We transfected A549 cells with vectors containing wild-

type caspase-8, or mutant caspase-8 in which Y397 or Y465 had been mutated to non-

phosphorylatable phenylalanine (Y397F and Y465F) or to the phosphomimetic amino 



acid, glutamic acid (Y397E and Y465E) 23.  Overexpression of caspase-8 resulted in 

increased A549 cell apoptosis (Fig. 3b), in association with increased activity of caspase-

8 and caspase-3 (Fig. 3c).  Caspase activity and rates of apoptosis were further increased 

in cells transfected with the non-phosphorylatable caspase-8 mutants; conversely, 

transfection with pseudophosphorylated caspase-8 Y397E or Y465E resulted in rates of 

apoptosis that did not differ from those of empty vector controls (Fig. 3b).  Increased 

caspase-8 activity in cells transfected with wild-type caspase-8 or the Y397F mutant was 

associated with increased caspase-3 cleavage and nuclear translocation (Fig. 3d).  Thus 

dephosphorylation of epithelial cell caspase-8 results in increased epithelial cell apoptosis. 

 

Oxidants Induce Epithelial Cell Apoptosis and Caspase-8 Dephosphorylation    

 Treatment of either A549 cells, BEAS-2B cells or HEK-293 cells with hydrogen 

peroxide (H2O2, 100 μM) resulted in a time-dependent increase in apoptosis (Fig. 4a), 

and in rapid caspase-8 dephosphorylation (Fig. 4b) with cleavage of caspases-8 and -3 to 

their active forms (Fig. 4c).  H2O2 also induced a time-dependent reduction in levels of 

the endogenous antioxidant, GSH (Fig. 4d).  Conversely, the addition of GSH (10 mM) 

to co-cultures of epithelial cells and LPS-activated neutrophils attenuated the increased 

rates of apoptosis (Fig. 4e shows data from co-cultures of PMN and BEAS-2B cells; 

similar effects were seen using A549 cells and HEK-293 cells, data not shown).  

Together these experiments show that exogenous oxidants can induce caspase-8 

dephosphorylation and epithelial cell apoptosis, and that this process can be inhibited by 

endogenous antioxidants. 

 



The Caspase-8 Phosphorylation State and Epithelial Cell Survival are Regulated by a 

Src Kinase 

 The Src kinase family member, lyn,  phosphorylates caspase-8 in inflammatory 

neutrophils 18, while constitutively active Src phosphorylates caspase-8 in HEK293 cells 

17.  Caspase-8 and lyn co-immunoprecipitated in A549 cells; treatment of cultures with 

either H2O2 or the Src kinase inhibitor, PP2 (10 μM), resulted in dissociation of caspase-8 

and lyn, and dephosphorylation of caspase-8 (Fig. 5a), in association with accelerated 

epithelial cell apoptosis (Figs. 4a, 5b).   Caspase-8 also co-immunoprecipitated with c-

Src; pretreatment with H2O2 disrupted this interaction (Fig.5c).  Overexpression of either 

c-Src or lyn attenuated the pro-apoptotic effects of H2O2 in A549 cells, an effect that 

could be reversed by the broad spectrum Src kinase inhibitor, PP2 (Fig. 5d).  Thus Src 

family kinases phosphorylate caspase-8 in A549 epithelial cells, and their kinase activity 

is inhibited by H2O2. 

 

SHP-1 is Phosphorylated by H2O2, and Dephosphorylates Epithelial Cell Caspase-8  

 Caspase-8 is dephosphorylated by the Src homology domain 2 containing 

phosphatase (SHP-1) in neutrophils 18.  SHP-1 activity is enhanced through its 

phosphorylation on Y536 24.   SHP-1 was expressed in A549 cells. Exposure to H2O2 

resulted in tyrosine phosphorylation of SHP-1, reaching maximal levels by 60 minutes 

(Fig. 6a), in association with increased SHP-1 activity (Fig. 6b).  Overexpression of 

SHP-1 in A549 cells resulted in increased rates of apoptosis, both in resting cells, and in 

response to H2O2 (Fig. 6c).  Moreover overexpression of both caspase-8 and SHP-1 

resulted in increased cleavage of caspase-8 to its active form (Fig. 6d).  SHP-1 and 



caspase-8 did not associate in resting epithelial cells; however exposure to H2O2, a 

stimulus which induces both SHP-1 phosphorylation (Fig. 6a) and A549 cell apoptosis 

(Fig. 4a), resulted in co-immunoprecipitation of caspase-8 and SHP-1 (Fig. 6e).  When 

A549 cells were transfected with myc-tagged constructs of SHP-1 or caspase-8, exposure 

to H2O2 resulted in increased SHP-1 phosphorylation, and decreased caspase-8 

phosphorylation (Fig. 6f).   In aggregate, these studies suggest that the caspase-8 

phosphorylation state in cultured epithelial cells is regulated by dynamic interactions 

between Src kinases and the SHP-1 phosphatase, and that hydrogen peroxide, by 

phosphorylating and activating SHP-1, can direct the net consequences of this interaction 

towards caspase-8 dephosphorylation, with resultant epithelial cell apoptosis.   

 

Activated Neutrophils Increase SHP-1 Phosphorylation and Activity, While Src 

Kinases Inhibit Neutrophil-Mediated Cell Death 

 Finally we sought to determine whether neutrophil-derived oxidants could induce 

SHP-1 activation and caspase-8 dephosphorylation, and so provide a mechanistic 

explanation for neutrophil-mediated induction of epithelial cell apoptosis.  Consistent 

with what we had observed using trauma patient neutrophils, co-culture of A549 (Fig. 

7a) or HEK293 (Fig. 7b) cells with LPS-activated neutrophils resulted in enhanced 

epithelial cell apoptosis.  Pretreatment of neutrophils with either DPI (10 μM) or catalase 

(10 μg/ml) blocked the LPS-induced increase in apoptosis, but had no effect on the 

increase resulting from exposure to neutrophils alone.   Co-culture with LPS-activated 

neutrophils increased SHP-1 activity (Fig. 7c) in A549 cells.  Following transfection of 

A549 cells with c-myc-tagged SHP-1, exposure to LPS-activated neutrophils resulted in 



increased SHP-1 phosphorylation (Fig. 7d), and when caspase-8-transfected A549 cells 

were co-cultured with activated neutrophils, caspase-8 was dephosphorylated (Fig. 7e).   

Finally, transfection of A549 cells with plasmids encoding either Lyn or c-Src attenuated 

the increased rates of apoptotic death resulting from culture with LPS-activated 

neutrophils (Fig. 7f).  Together these studies recapitulate changes seen following culture 

of epithelial cells with trauma patients’ neutrophils, and confirm that activated 

neutrophils induce epithelial cell apoptosis. 

 

 

Discussion 

 

The maintenance of normal tissue architecture is a dynamic process, regulated by 

the reciprocal processes of programmed cell death and cellular regeneration.  A spectrum 

of acute stresses that threaten the survival of the whole organism can modulate this 

balance.  At the interface between the multicellular host and its environment, the 

epithelial cell is particularly vulnerable to injury.  Both neutrophils and epithelial cells are 

constitutively apoptotic.  The in vivo half-life of the neutrophil is only 6 to 8 hours 25, 

while that of the epithelial cell ranges from several days for gastrointestinal epithelial 

cells 26 to upwards of 18 months for lung epithelial cells 27.  Increased epithelial cell 

apoptosis is a prominent feature of a variety of  inflammatory disorders, including 

ulcerative colitis 28, C. difficile colitis 29, pancreatitis 30, experimental influenza 31, renal 

ischemia/reperfusion injury 32, ventilator-induced lung injury 3, sepsis 12, trauma 33, and 

toxin-induced liver injury 34 .   



 

Our studies establish a novel mechanism of neutrophil-mediated cytotoxicity 

during inflammation. Circulating neutrophils freshly isolated from patients who have 

sustained severe traumatic injury trigger the apoptotic death of a panel of cultured 

epithelial cells. This mechanism of injury can be recapitulated ex vivo using 

lipopolysaccharide-stimulated neutrophils from healthy volunteers.  The pro-apoptotic 

activity of the neutrophil is dependent on the production of reactive oxygen intermediates 

– in particular hydrogen peroxide - and occurs through the SHP-1-mediated tyrosine 

dephosphorylation of epithelial cell caspase-8, a process that, in turn, is inhibited by over-

expression of Src family kinases.   

 

Immune cell activation is finely regulated through the interaction of Src family 

kinases and phosphatases of the Src homology-containing domain (SHP) family with 

conserved immunoreceptor tyrosine-based activation motifs (ITAMs) and 

immunoreceptor tyrosine-based inhibition domains (ITIMs).  These domains serve as a 

docking site for an SH-2 domain-containing phosphatase such as SHP-1, SHP-2, or SHIP 

35.  They are present within the intracellular tail of immune cell receptors such as those of 

B or T cells, and the Fc receptor on monocytes 36 or transmembrane adapter proteins such 

as DAP12 37.  The classical ITIM sequence consists of 6 amino acids with a consensus 

sequence I/V/LxYxxL/V; phosphorylation of the tyrosine residue results in recruitment of 

an SH2 domain-containing phosphatase and initiates inhibitory signaling 19.  Caspase-8 

contains a modified ITIM sequence at Y310 that lacks a hydrophobic amino acid in the 

Y-2 position.  Despite this, however, it is able to recruit SHP-1 20, and mutation of Y310 



to the nonphosphorylatable phenylalanine prevents the increased apoptosis when HL-60 

cells are co-transfected with SHP-1 and caspase-8 18.  Moreover caspase-8 functions as an 

adapter protein, interacting with death receptors of the CD95 family to transduce pro-

apoptotic signals from the environment, and with the p85 regulatory subunit of PI3 kinase 

to activate PI3 kinase and support cellular activities such as adhesion and motility 38.   

 

The tyrosine phosphatase, SHP-1 is expressed in hematopoietic cells and at lower 

levels in epithelial cells 39.  It is activated through the phosphorylation of Y536 and Y564 

by the Src kinase, lyn 40.  Lyn activity, in turn, is increased following exposure to reactive 

oxygen species 41.  Hydrogen peroxide at concentrations encountered in vivo 42 induced 

SHP-1 tyrosine phosphorylation, resulting in a physical interaction between SHP-1 and 

caspase-8;  in consequence, caspase-8 was dephosphorylated and its catalytic activity 

increased.  In support of the hypothesis that neutrophil-derived oxidants play a similar 

role, an inhibitor of the NADPH oxidase (DPI) or antioxidants (GSH or catalase), 

attenuated the epithelial cell apoptosis induced by co-culture with trauma neutrophils.  

 

 Neutrophil-mediated mechanisms of host cell cytotoxicity are numerous, 

reflecting the prodigious capacity of the neutrophil to respond to local infectious 

challenge or to tissue injury 43-45.  Oxidants generated through the neutrophil NADPH 

oxidase cause oxidation of membrane phospholipids and induce necrotic cell death.  In 

the clinical setting of critical illness, however, it is striking that organ dysfunction is 

disseminated beyond the initiating site of injury or infection, and that the local histologic 

changes are pathologically bland in nature, with minimal evidence of necrosis 46.   



 

 Our studies were undertaken ex vivo, using neutrophils from victims of major 

trauma and a panel of cultured epithelial cells.  Animal models are consistent with this 

hypothesis 6, although it is disarmingly easy to establish efficacy in an animal model, and 

conversely enormously challenging to translate these observations into effective human 

therapies 47.  Nonetheless, strategies that either inhibit the capacity of the neutrophil to 

activate an oxidative burst response, or that enable epithelial cells to resist the 

consequences of this process, may represent novel interventional approaches that can 

minimize neutrophil-mediated cellular injury, minimize the adverse consequences of 

activation of an innate immune response, and ultimately lead to increased patient survival 

following a broad spectrum of acute inflammatory stimuli. 

 

 



Materials and Methods 

Trauma Patients   We recruited patients sustaining multisystem trauma (ISS >16) who 

were admitted to the Trauma-Neurosurgical Intensive Care Unit of St. Michael’s 

Hospital; patients were studied as early as possible following injury, and serially over the 

duration of the ICU stay.  The protocol was reviewed by the Human Ethics Review 

Committee of St. Michael’s Hospital and written informed consent was obtained from the 

patient or a surrogate decision-maker.    

Cells   Circulating neutrophils were obtained from consenting healthy human volunteers 

by density gradient centrifugation using Ficoll-Hypaque as previously described 48, and  

resuspended in polypropylene tubes in Dulbecco’s Modified Minimum Essential Medium 

(DMEM, Invitrogen) supplemented with 10% fetal bovine serum and 1% 

penicillin/streptomycin solution.  A549 cells (ATCC CCL-185) and Human Embryonic 

Kidney (HEK)-293 cells (ATCC CRL-1573) were similarly cultured in supplemented 

DMEM.  Human distal airway BEAS-2B cells (ATCC CRL-9609) were cultured in 

bronchial epithelial cell basal medium (BEBM, Lonza Canada Inc., Shawinigan Que.) 

supplemented with BEGM SingleQuot (Catalog #CC-4175, Lonza Canada) containing 

BBE, insulin, hydrocortisone, GA-1000, epinephrine, retinoic acid, transferrin, and 

triiodothyronine.   Cells were cultured in 100x20 mm tissue culture plates, and 

experiments performed at 80% confluency.   

Antibodies and Reagents  Antibodies used in these studies were murine monoclonal anti-

caspase-8 (1:1000; Calbiochem), agonistic anti-CD95 monoclonal antibody, CH11 (100 

ng/ml; Biosource International, Camarillo CA), murine monoclonal anti-phosphotyrosine 

(1:2000, Upstate Technologies), anti-caspase-3 (1:1000, Santa Cruz Biotechnology ), 



murine monoclonal anti-lyn (1:1000; Santa Cruz Biotechnology ), anti C-Src (1:1000, 

Santa Cruz Biotechnology;), murine monoclonal anti-SHP-1 (1:1000; Santa Cruz 

Biotechnology), murine monoclonal anti-β actin (Santa Cruz Biotechnology; 1:4000), 

and murine monoclonal anti-c-myc (1:1000; Santa Cruz Biotechnology).  

LPS from E. coli O111:B4 (Sigma-Aldrich, Mississauga, Canada) was used at a 

concentration of 1 μg/ml.  Recombinant TNFα (BioSource International, Camarillo, CA) 

was used at a concentration of 50 ng/ml.  The Src kinase inhibitor, 4-amino-5-(4-

chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2; Calbiochem ) was used at a 

concentration of 10 μM; hydrogen peroxide (H2O2; Sigma-Aldrich) was used at a 

concentration of 100 μM.  

Neutrophil:Epithelial Cell Co-cultures  Neutrophils were added to epithelial cell 

cultures at a  ratio of 5:1 (2.5X106 PMN to 5X105 epithelial cells), and incubated at 37oC 

with or without LPS (1 μg/ml) for a further 18 hours.  Plates were then washed three 

times with supplemented medium to remove PMN, and epithelial cell cultures trypsinized 

to detach cells from the culture plates.   

Construction of Plasmids  Total RNA from neutrophils from healthy human volunteers 

was extracted using TRIzol reagent and 1 μg RNA transcribed to first-strand cDNA using 

the Superscript II system (Invitrogen); the resultant cDNA was amplified by PCR using 

the ExpandTM High Fidelity PCR System (Roche) and the primer sets shown in Table 1.  

Amplified fragments were cloned into the pcDNA3.1/Myc-His vector (Invitrogen)  

according to the manufacturer’s instructions.  The recombinant plasmids were transfected 

into DH5a-competent cells (Invitrogen) and colonies identified by restriction enzyme 

digestion and sequencing. 



 Construction of Mutant Caspase-8 Plasmids  Tyrosine residues in the caspase-8 

molecule were mutated using site-directed primers to mutate the tyrosine residue (TAT or 

TAC) to phenylalanine (TTT or TTC).  Pseudophosphorylation mutants of the same sites 

were created by mutating the relevant tyrosine (Y) residues (TAT or TAC) to glutamic 

acid (E; GAG) 23.  Finally a catalytically inactive mutant of caspase-8 was created by 

mutating cysteine (C) 377 to serine (S) 22; primer sequences are shown in Table 2.   

 

Mutations were performed using the QuikChange Site-Directed Mutagenesis Kit 

(Stratagene) and a caspase-8/myc-his plasmid as a template to perform the mutant strand 

synthesis reaction. After Dpn I digestion of the amplified product, the mutant DNA was 

transfected to XL1- blue supercompetent cells, and colonies identified by restriction 

enzyme digestion and sequencing.   

 Cell Transfection   Cells were transfected with plasmids containing wild-type or mutant 

caspase-8 as previously described 18.  Briefly, 4 μg plasmid and 10 μl Fugene 6 reagent 

(Roche) in 200 μl of serum-free medium were added to A549 cell cultures in 10 cm 

plates at 60% confluency.  Cells were cultured for 24 hours, then washed, and cultured 

for a further 48 hours prior to study.    

Assay of Epithelial Cell Apoptosis   Epithelial cells were detached from culture plates by 

trypsinization, washed with PBS, and resuspended in supplemented medium.  Cells were 

permeabilized by the addition of Triton-X100 and incubated for 10 minutes in the dark 

with propidium iodide (50 μg/ml).  The characteristic DNA fragmentation of apoptosis 

was quantified as the percentage of hypodiploid DNA in permeabilized cells by flow 

cytometry using a BD FACS CANTO cytofluorometer with BD FACS DIVA software 49; 



a minimum of 10,000 events was recorded.   Alternatively, early events during the 

expression of apoptosis were assessed by detecting exteriorized phosphatidyl serine by 

flow cytometry as the binding of Annexin V as described 48. 

Western Blot and Co-immunoprecipitation Studies  Cells were lysed  in lysis buffer 

(10mM Tris, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 10 mM NaF, 1 mM 

PMSF, 1mM Na3VO4, 10µg/ml leupeptin, 10 µg/ml aprotinin).  Lysates were resolved on 

a 10% SDS-PAGE gel, transferred to nitrocellulose (Amersham Pharmacia Biotech), and 

probed with the appropriate primary antibody.  Bands were detected with an HRP-

conjugated second antibody at a dilution of 1:4000 using the ECL western blotting 

detection system (Amersham Pharmacia Biotech).  Blots were stripped and reprobed with 

an anti-actin antibody to confirm equal loading.  

For immunoprecipitation studies, cell lysates were centrifuged at 12000 rpm for 

10 min.  Supernatants were pre-cleared with protein G sepharose beads (Amersham 

Biosciences) for one hour, then re-centrifuged to remove the beads.  Protein 

concentration in the lysates was measured using the BCA protein assay (Pierce), then 5 μl 

of anti-caspase-8 (Calbiochem), or 15 μl of anti-SHP1 (Santa Cruz), or 5 μl of anti-lyn 

(Santa Cruz) was added to 500 μl of supernatant, and incubated for 1 hour at 4o C before 

adding protein G beads (20 μl) and incubating for an additional 1 hour or overnight.  

Suspensions were centrifuged and beads washed three times in PBS, then boiled in 

Laemmli buffer for 5 minutes prior to SDS-PAGE and western analysis.  Western 

analysis of the immunoblots used anti-phosphotyrosine (clone 4G10) 1:1000 (Upstate), or 

other antibodies as noted.   



Measurement of  GSH Levels:  GSH levels were assayed using a DTNB (5,5’-

dithiobis[2-nitrobenzoic acid])-based assay as previously described 50.  A549 cells (5 X 

106/ml) were sonicated for 30 seconds on ice in 300 μL of 5% 5-sulfosalicylic acid.  

Following centrifugation for 10 minutes at 10,000G, nonprotein sulfhydryls in the 

supernatant were quantified as the reduction of DTNB by its conversion to TNB (5-thiol-

2 nitrobenzoic acid), measured at 412 nm using a spectrophotometer.  GSH levels were 

expressed as  nmol/100 μl/μg protein by comparison to a standard curve. 

Assay of Activity of  Caspases-3 and -8:  Caspase activity was determined using a 

caspase assay kit (BioSource International).  Cell lysates sere incubated overnight with 

25 μl of synthetic substrate that is preferentially cleaved by caspase-3 (Ac-DEVD-pNA) 

or caspase-8 (Ac-IETD-pNA).  Release of the colorimetric substrate was measured at 405 

nm in 96 well plates using a colorimetric plate reader (Titertek Instruments, Hunstville, 

AL), and expressed as absorbance at 405 nm per mg protein.   

SHP-1 Activity Assay:  The release of inorganic phosphate from phosphopeptides was 

measured using the malachite green assay (Upstate).  Briefly, 10x10 6 A549 cells were 

lysed for 10 minutes on ice in lysis buffer containing 1 mM sodium orthovanadate and 

protease inhibitors.  Suspensions were centrifuged for 15 minutes at 12000g, protein 

content of the resulting supernatant was determined, and  500 μl supernatant was incubated 

with 10 μl anti-SHP-1 antibody (Santa Cruz) pre-bound to Protein A sepharose 

(SantaCruz) for three hours at 4oC.  Immunoprecipitates were washed six time in wash 

buffer (10 mM Tris pH 7.4), then incubated with tyrosine phosphopeptide substrate 

(RRLIEDAEpYAARG) in 10 mM  Tris pH 7.4 for 30 minutes.  The reaction was stopped 

with 100 μl malachite green solution.   Absorbance was measured at 620 nm using a 



LabSystems Multiskan plate reader and phosphate release in pmol phosphate/minute/μg 

was determined by comparing absorbance to standard curve.   

Immunofluorescence Microscopy:  A549 cells were grown on coverslips in 75 mm 

plates, and transfected with caspase-8/pcDNA3.1/myc plasmids.  After 24 hours, cells 

were washed with PBS, then fixed on coverslips for 30 minutes with 4% 

paraformaldehyde.  Coverslips were then incubated with 100 mM glycine in PBS, 

washed 4 times, and permeabilized with 0.1% Triton-X-100 in PBS supplemented with 

1% albumin.  After blocking with 5% albumin in PBS, slides were incubated with 

primary antibodies (rabbit anti-active caspase-3, 1:1000 and mouse anti-c-myc, 1:1000) 

for 60 minutes, washed 7 times, and incubated for 60 minutes with secondary antibody 

(anti-mouse cy3-conjugated and anti-rabbit FITC-conjugated).  Slides were washed 7 

times, and immunofluorescence detected using an Olympus IX 81microscope (Melville, 

N.Y.) coupled to an Evolution QEi monochrome camera (Media Cybernetics) using QED 

InVivo Imaging software and ImagePro Plus 3DS 5.1 softwar (Media Cybernetics).  

Statistics:   Data are presented as means ± standard deviation.  Intergroup comparisons 

were performed using one-way ANOVA followed by Dunnett’s t test, with the α level for 

statistical significance set at p<0.05.  Studies were repeated a minimum of 3 times. 

 



Table 1.  Demographic Characteristics of the Study Population 

 

Baseline Characteristics 

 

Age (SD)     37 ± 15 years 

Males (%)       8 (100) 

Injury Severity Score (SD)   32 ± 8 

Units packed red blood cells in first 

 24 hours (median; range)  3 (0 – 31) 

Time to sampling (hours; SD)  73 ± 45 

 

 

Outcomes  

 

Days mechanical ventilation (SD)  11 ± 7 

ICU days (SD)    13 ± 6 

Survival (%)       8 (100) 

 



Table 2.  Primers for Plasmid Construction 

 

Caspase-8       Upstream primer (containing a Hind III site and a Kozak sequence): 

   5’-GCAAGCTTGCCACCATGGACTTCAGCAGAAATCT-3’  

Downstream primer (containing an Xba I site):  

5’-GCTCTAGAATCAGAAGGGAAGACAAGT-3’ 

 

SHP-1  Upstream primer (containing a Hind III site and a Kozak sequence): 

5’-GCAAGCTTGCCACCATGGTGAGGTGGTTTCACCGA-3’ 

Downstream primer (containing an Xba I site): 

5’-GCTCTAGACTTCCTCTTGAGGGAACCCT-3’ 

 

Lyn  Upstream primer (containing a BamH I site and a Kozak sequence): 

5’-GCGGATCCGCCACCATGGGATGTATAAAATCAAAA-3’ 

Downstream primer (containing an Xba I site): 

5’-GCTCTAGAAGGCTGCTGCTGGTATTGCCCT-3’ 

 

Caspase-8 Y→F   

Tyr 397  Upstream primer 5’-GGAGCAACCCTTTTTAGAAATGG-3’ 

Downstream primer 5’-CCATTTCTAAAAAGGGTTGCTCC-3’ 

 

Tyr 465  Upstream primer 5’-GAAGTGAACTTTGAAGTAAGC-3’ 

        Downstream primer 5’-GCTTACTTCAAAGTTCACTTC-3’ 



Caspase-8 Y→E 

Tyr 397   Upstream primer  5’-GGAGCAACCCGAGTTAGAAATGG-3’ 

Downstream primer  5’-CCATTTCTAACTCGGGTTGCTCC-3’ 

 

Tyr 465   Upstream primer  5’-GAAGTGAACGAGGAAGTAAGC-3’ 

Downstream primer    5’-GCTTACTTCCTCGTTCACTTC-3’ 

 

Caspase-8 Y377S 

Upstream primer   5’-ATTCAGGCTAGTCAGGGGG-3’ 

Downstream primer   5’-CCCCCTGACTAGCCTGAAT-3’ 



Legends for Figures 

 

Figure 1.  Trauma Neutrophils Induce Caspase-8 Dephosphorylation and the 

Apoptotic Death of Epithelial Cells 

(a)  PMN (2.5 X 106) harvested from healthy laboratory controls or from patients who 

had sustained multiple traumatic injuries were cultured for 18 hours with 0.5 X 106 A549 

cells or HEK293 cells.  Control PMN induced a modest degree of epithelial cell 

apoptosis; trauma PMN induced significantly greater degrees of epithelial cell apoptosis; 

Results are means ± SD, N=8; *p<0.05 vs no PMN, ** p<0.001 vs no PMN and <0.05 vs 

control PMN.  (b)  A549 cells were cultured alone, or with 2.5 X106 trauma PMN, with 

or without a pharmacologic inhibitor of the NADPH oxidase (DPI, 10 μM), catalase (10 

μg/ml), or glutathione (10 μM).  A549 cell lysates were immunoprecipitated with anti-

caspase-8, then precipitates probed with anti-caspase-8 (upper panel) or anti-

phosphotyrosine (lower panel).  Trauma neutrophils induced caspase-8 

dephosphorylation, an effect that was partially blocked by DPI, catalase, or GSH.  (c)  

A549 cell lysates prepared as in 1b were analyzed by Western blot analysis using an 

antibody to the p18 active form of caspase-8 (upper panel); blots were stripped and 

reprobed with antibody to β-actin (lower panel) to confirm equal loading.  The graph 

demonstrates the fold change in expression of active caspase-8 from control levels, as 

measured by densitometry; N=3, *p<0.05.    (d)  A549 cells and HEK293 cells were 

cultured with (black  bars) or without (clear bars) trauma PMN.  Addition of DPI 

(hatched bars), catalase (light gray bars), or GSH (dark gray bars) significantly attenuated 



the pro-apoptotic effects of trauma PMN.  Results are means ± SD, N=8; *p<0.01 vs 

trauma PMN alone. 

 

Figure 2.  LPS-Stimulated Neutrophils Induce Epithelial Cell Apoptosis  

(a).  Freshly isolated neutrophils alone induced a significant increase in rates of epithelial 

cell apoptosis.  While the addition of LPS (1 μg/ml) to A549 cultures was without effect, 

exposure to LPS-stimulated neutrophils resulted in a further significant increase in rates 

of epithelial cell apoptosis (Mean ± SD, N=6; *p<0.01 vs control cells, **p<0.01 vs 

neutrophils alone).  (b).  Similar results were observed when early changes of epithelial 

cell apoptosis were evaluated by flow cytometry as the binding of Annexin V (Mean ± 

SD, N=3; *p<0.05 vs control cells, **p<0.05 vs neutrophils alone.   (c). To confirm that 

caspase-8 cleavage was necessary for epithelial cell apoptosis, A549 cells were 

transfected with either wild-type caspase-8, or the cleavage-resistant mutant caspase-8 

C377S.  Rates of apoptosis were increased following transfection with caspase-8, but not 

following transfection with the C377S mutant or empty plasmid (N=6; *p<0.01 vs C377S 

or empty plasmid). 

 

Figure 3.   The Caspase-8 Tyrosine Phosphorylation State Regulates Epithelial Cell 

Survival 

(a).   Confluent cultures of A549 cells were incubated with LPS (1 μg/ml ), TNFα (50 

ng/ml), or the agonistic anti-CD95 MAb, CH11 (100 ng/ml).  Lysates were 

immunoprecipitated with anti-caspase-8, and immunoprecipitates probed with an 

antiphosphotyrosine antibody.  Exposure to TNFα or CH11 resulted in tyrosine 



dephosphorylation of caspase-8.  (b).  Rates of apoptosis, quantified by propidium iodide 

uptake in permeabilized cells, were increased in A549 cells transfected with wild-type 

myc-caspase-8 construct (dark gray bar), and further increased when transfected with 

either a Y397F or Y465F mutant caspase-8 construct (black bars); in contrast, cells 

transfected with the non-phosphorylatable Y397E or Y465E constructs (light gray bars) 

manifested rates of apoptosis that did not differ from those of empty vector controls 

(N=6; *p<0.01 vs non-transfected controls or phosphorylation-resistant mutants; 

**p<0.01 vs wild-type caspase-8 transfectants; ***p<0.01 vs non-phosphorylatable 

mutants, p=NS vs empty vector controls).   (c).  A549 cells transfected with wild-type 

caspase-8/c-myc (dark gray bars) showed increased activity of caspases-8, and -3; 

caspase activity was further increased when cells were transfected with the non-

phosphorylatable Y397F constructs (black bars; N=5; *p<0.05 vs cells transfected with 

empty vector, **p<0.05 vs cells transfected with wild-type caspase-8).   (d).   Transfected 

A549 cells were stained with FITC-labeled anti-c-myc (green) or ethidium bromide-

labeled antibody to the active fragment of caspase-3 (red); nuclei were stained with the 

nuclear dye, DAPI (blue).  Cells were evaluated by immunofluorescence microscopy 24 

hours following transfection.  Cells transfected with caspase-8 showed enhanced caspase-

3 cleavage, reflected in enhanced expression of active caspase-3; cells transfected with 

the Y397F non-phosphorylatable mutant showed further activation of caspase-3, and 

increased caspase-3 nuclear translocation.  

 

Figure 4.   Hydrogen Peroxide Induces Epithelial Cell Apoptosis 



(a).  Culture of A549 cells, BEAS-2B cells, or HEK-293 cells with exogenous hydrogen 

peroxide (H2O2, 100μM) led to progressively increased rates of in vitro apoptosis, (N=6 

for A549 cells, N=3 for BEAS-2B and HEK-293 cells; * p<0.05).  (b).  Exogenous H2O2 

also induced rapid dephosphorylation of caspase-8.  Caspase-8 was immunoprecipitated 

from cell lysates (upper blot) then precipitates were probed with anti-phosphotyrosine 

antibody (lower blot)  (c).  Whereas minimal spontaneous activational cleavage of 

caspases-8 (55 kDa) and -3 (34 kDa) was evident following 24 hours of in vitro culture in 

control A549 cells, the addition of H2O2 resulted in a time-dependent increase in the 

cleavage of both to their active moieties (18 and 20 kDa respectively).  (d).  H2O2 also 

produced a dose- and  time-dependent decrease in the levels of the endogenous 

intracellular antioxidant, glutathione (GSH; N=4; *p<0.05 versus time 0).  (e).   Addition 

of glutathione (GSH, 10 mM) to the culture medium significantly attenuated the capacity 

of neutrophils to induce BEAS-2B cell apoptosis (N=6; ** p<0.01 vs cells cultured 

without GSH).  

 

Figure 5.   Src Kinase Activity Promotes Epithelial Cell Survival 

(a).   Caspase-8 and the Src kinase, lyn, co-immunoprecipitated, albeit weakly, in resting 

A549 cells.  Addition of H2O2 (100 μM) or the Src kinase inhibitor, PP2 (10 μM) resulted 

in disruption of these interactions.  Cell lysates were immunoprecipitated with antibodies 

to caspase-8 (left) or lyn (right), then precipitates were probed by Western blot analysis 

using anti-caspase-8 (upper panel) or anti-lyn (lower panel). Dotted arrows denote the 

immunoglobulin heavy chain.  (b).  Addition of PP2 (10 μM) to cell cultures resulted in a 

time-dependent increase in rates of apoptosis, evaluated as uptake of propidium iodide in 



permeabilized cells (N=3 for each).  (c).  c-Src co-immunoprecipitated with caspase-8 in 

A549 lung epithelial cells; exposure to H2O2 (lanes 2 and 4) blocked this interaction.     

(d).  A549 cells were transfected with a plasmid containing c-Src, lyn or an empty vector 

(pcDNA3.1) and cultured with either H2O2 or PP2.  Overexpression of either c-Src or lyn 

inhibited the pro-apoptotic effects of H2O2, but not those resulting from Src kinase 

inhibition (N=6; *p<0.01 compared with non-transfected cells or cells transfected with 

vector only).   

 

Figure 6.   The Tyrosine Phosphatase, SHP-1, Dephosphorylates Epithelial Cell 

Caspase-8 

(a).   Exposure of A549 cells to H2O2 (100 μM) resulted in a time-dependent increase in 

the tyrosine phosphorylation of SHP-1.  A549 cell lysates were immunoprecipitated with 

anti-SHP-1, then precipitates probed by Western analysis with antiphosphotyrosine.   (b).   

Exposure of A549 cells to H2O2 resulted in increased SHP-1 activity as measured by the 

malachite green assay (N=3; * p<0.05).   (c).   A549 cells were transfected with SHP-1 or 

empty vector (pcDNA3.1); rates of apoptosis were quantified as uptake of propidium 

iodide 3 days following transfection.  While exposure to H2O2 increased rates of 

epithelial cell apoptosis, overexpression of SHP-1 increased apoptosis in both resting 

A549 cells, and A549 cells exposed to H2O2 (N=6; *p<0.01 vs cells not exposed to H2O2, 

** p<0.01 vs cells not transfected with SHP-1)   (d).  A549 cells were co-transfected with 

caspase-8 and SHP-1.  Lysates were immunoprecipitated with anti-c-myc, then probed 

with antibodies to total or active caspase-8.   Cleavage of caspase-8 to its active form was 

increased by co-transfection.   (e).  A549 cell lysates were immunoprecipitated with anti-



caspase-8 (left) or anti-SHP-1 (right), and precipitates probed by Western analysis with 

anti-SHP-1 (upper panel) or anti-caspase-8 (lower panel).  Exposure to H2O2 increased 

the physical interactions between SHP-1 and caspase-8.  (f).  A549 cells were transfected 

with myc-tagged constructs encoding SHP-1 (left) or caspase-8 (right), then immuno-

precipitated with anti-c-myc, and immunoblotted with either anti-c-myc (upper panel) or 

anti-phosphotyrosine (lower panel).  Exposure of transfected cells to H2O2 (100 μM) 

increased the tyrosine phosphorylation of transfected SHP-1, and concomitantly, 

decreased the phosphorylation of caspase-8. 

 

Figure 7.   LPS-activated Neutrophils Induce SHP-1 Phosphorylation and Activity, 

and Increase Caspase-8 Dephosphorylation   

(a,b).  Neutrophils freshly isolated from healthy volunteers were cultured with either 

medium, DPI (10 μM), or catalase ( 10 μg/ml), with or without LPS (1 μg/ml), then 

added to subconfluent cultures of A549 epithelial cells (Fig. 7a) or HEK293 cells (Fig. 

7b).  Pretreatment with either DPI or catalase attenuated the increase in epithelial cell 

apoptosis resulting from exposure to LPS-activated neutrophils (N=5 for each; *p<0.05 

compared with LPS-treated neutrophils alone).  (c).  SHP-1 phosphatase activity 

measured using the malachite green assay was increased when A549 cells were cultured 

with resting neutrophils, and further increased when A549 cells were cultured with LPS-

activated neutrophils (N=3; *p<0.05 vs A549 cells alone, **p<0.05 vs resting PMN).  (d).   

A549 cells were transfected with myc-tagged SHP-1, and lysates immunoprecipitated 

with anti-myc, then probed with anti-phosphotyrosine.   Exposure to LPS-stimulated 

neutrophils resulted in enhanced tyrosine phosphorylation of SHP-1.  (e).  A549 cells 



were transfected with myc-tagged caspase-8, immunoprecipitated with anti-myc, and 

probed with either anti-myc (upper panel) or antiphosphotyrosine (lower panel).  Co-

culture with LPS-activated neutrophils resulted in reduced tyrosine phosphorylation of 

the transfected caspase-8 construct.   (f).  A549 cells were transfected with myc-tagged 

constructs encoding the Src family kinase members Lyn (gray bars) or c-Src (black bars), 

then incubated with neutrophils and/or LPS.  Over-expression of Src family kinases 

provided protection against the apoptosis-inducing activity of LPS-activated neutrophils.  

N=4; * p<0.05. 
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