

What it is What it could be

What happened to biology at the end of XXth century?

RESEARCHARTICLE

Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome

Daniel G. Gibson,¹ John I. Glass,¹ Carole Lartigue,¹ Vladimir N. Noskov,¹ Ray-Yuan Chuang,¹ Mikkel A. Algire,¹ Gwynedd A. Benders,² Michael G. Montague,¹ Li Ma,¹ Monzia M. Moodie,¹ Chuck Merryman,¹ Sanjay Vashee,¹ Radha Krishnakumar,¹ Nacyra Assad-Garcia,¹ Cynthia Andrews-Pfannkoch,¹ Evgeniya A. Denisova,¹ Lei Young,¹ Zhi-Qing Qi,¹ Thomas H. Segall-Shapiro,¹ Christopher H. Calvey,¹ Prashanth P. Parmar,¹ Clyde A. Hutchison III,² Hamilton O. Smith,² J. Craig Venter^{1,2}*

2 JULY 2010 VOL 329 SCIENCE www.sciencemag.org

Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors

Kazutoshi Takahashi¹ and Shinya Yamanaka^{1,2,*}

¹Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan ²CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan

*Contact: yamanaka@frontier.kyoto-u.ac.jp DOI 10.1016/j.cell.2006.07.024

Cell 126, 663-676, August 25, 2006 @2006 Elsevier Inc. 663

EXTREME GENETIC ENGINEERING

An Introduction to Synthetic Biology

lanuary 2007

A synthetic oscillatory network of transcriptional regulators

Michael B. Elowitz & Stanislas Leibler

Departments of Molecular Biology and Physics, Princeton University, Princeton, New Jersey 08544, USA NATURE | VOL 403 | 20 JANUARY 2000 | www.nature.com

About

The International Genetically Engineered Machine competition (iGEM) is Biology competition. Student teams are given a kit of biological parts at the beginnin Standard Biological Parts. Working at their own schools over the summer, they use t

New way of doing biomedical research

Computational modelling left the niches

- Metabolic networks Fung et al. A synthetic gene-metabolic oscillator. Nature 2005; Herrgård et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 2008
 - **Signalling pathways** Bray et al. Receptor clustering as a cellular mechanism to control sensitivity. *Nature* 1998; Bhalla ad lyengar. Emergent properties of signaling pathways. *Science* 1998; Schoeberl et al. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. *Nat Biotechnol* 2002; Hoffmann et. The lkB-NFkB signaling module: temporal control and selective gene activation. *Science* 2002; Smith et al. Systems analysis of Ran transport. *Science* 2002; Bhalla et al. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. *Science* 2002; Nelson et al. Oscillations in NF-kB Signaling Control the Dynamics of Gene Expression. *Science* 2004; Werner et al. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. *Science* 2005; Sasagawa et al. Prediction and validation of the distinct dynamics of transient and sustained ERK activation. *Nat Cell Biol* 2005; Basak et al. A fourth IkappaB protein within the NF-kB signaling module. *Cell* 2007; McLean et al. Cross-talk and decision making in MAP kinase pathways. *Nat Genet* 2007; Ashall et al. Pulsatile Stimulation Determines Timing and Specificity of NF-kB-Dependent Transcription. *Science* 2009; Becker et al. Covering a broad dynamic range: information processing at the erythropoietin receptor. *Science* 2010

Gene regulatory networks McAdams and Shapiro. Circuit simulation of genetic networks. *Science* 1995; Yue et al. Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene. *Science* 1998; Von Dassow et al. The segment polarity network is a robust developmental module. *Nature* 2000; Elowitz and Leibler. A synthetic oscillatory network of transcriptional regulators. *Nature* 2000; Shen-Orr et al, Network motifs in the transcriptional regulation network of Escherichia coli. *Nat Genet* 2002; Yao et al. A bistable Rb-E2F switch underlies the restriction point. *Nat Cell Biol* 2008; Friedland. Synthetic gene networks that count. *Science* 2009

Pharmacometrics models Labrijn et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. *Nat Biotechnol* 2009

- Physiological models Noble. Modeling the heart from genes to cells to the whole organ. Science 2002; Izhikevich and Edelman. Large-scale model of mammalian thalamocortical systems. PNAS 2008
- Infectious diseases Perelson et al. HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 1996; Nowak. Population dynamics of immune responses to persistent viruses. Science 1996; Neumann et al. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 1998

Computational models on the rise

BioModels Database growth since its creation

Interest from new stakeholders

- "Biologists": computational models look "useful", "serious"
- Publishers: computational are respectable, and can be published in high profile journals
- Funding agencies: Models could help with the major challenges (read "science that can be sold to citizen/electors"): Health, Food, Energy...
- Industries: Models could help with the major challenges (read "new opportunities to make money"): Pharmas, crops, biofuels ...

The matrix of standards for M&S in Sys Bio

	ModelSimulationsdescriptionsand analysis		Numerical results
Minimal requirements	MIRIAM	MIASE	
Data-models	SOL SOL	SEDML	NuML?
Terminologies	<u>30</u>	KISAO	T E D D Y

Dimension 3: Covering alternative modelling approaches

Parallel and redundant efforts

What if the world-wide web was built like this?

The correct way to do it

Covering the entire modeling in the life-sciences

Existing standards interoperability

Threats to the whole enterprise

- Current efforts are largely dependent on key people. Their disengagement means stalling or disaggregation.
- Current funding structure is fragile. Many different grants, sometimes only supporting meetings, none of them infrastructure rolling funding, often tied to individuals.
- Current efforts, being developed under the umbrellas of specific institutions are not immune against intellectual property claims that would harm the community.
- Existing standards are developed with very different approaches, quality checks, and are based on completely different assumptions (e.g. implicit knowledge versus explicit mathematics).
- APIs, converters etc. need industry-grade support, incompatible with standard academic usages and possibilities

Overarching standardisation structure

The "WorldWide Web consortium" of modelling in biology http://co.mbine.org/

Mission 1: Coordinating the standards

• **CORE STANDARDS:** Efforts fulfilling COMBINE criteria and aiming at following COMBINE rules and interoperate with other COMBINE standards

• **ASSOCIATED EFFORTS:** Standards that are not representation formats, but aiming at enrich or bridge the core standards

• **RELATED EFFORTS:** Formats developed by other communities, that complement or interoperate with COMBINE formats, and that we would like to see joining COMBINE or collaborating closely to COMBINE

Current core COMBINE standards

- Model semantics, Model structure, Process description:
- Models semantics, Simulation and Analysis:
- Biological semantics, Model structure, Process description, Entity relationships:
 BioPAX
- Visual representation, Model structure, Process description, Entity Relationships, Activity flow:

Current associated standardization efforts

- Concept and data reference:
 - MIRIAM Registry

• Identifiers.org URIs

- Terminologies:
 - Modeling

Simulation

Related standardization efforts

PSI-MI

FieldML

Nature Precedings : doi:10.1038/npre.2011.6332.1 : Posted 4 Sep 2011

COMBINE does NOT aim to take over the development of the standard formats, but help coordinating and supporting this process

Mission 2: Coordinating meetings

• Annual COMBINE meetings

- COMBINE 2010: October 6–9, Edinburgh, **81 attendees**
- COMBINE 2011: September 3-7, Heidelberg, 82 registrations
- COMBINE 2012: End of summer, beginning autumn, Toronto
- COMBINE 2013: Date unknown, location unknown http://www.surveymonkey.com/s/combine-harmony-hosting-interest
- The Hackathons on Resources for Modeling in Biology
 - HARMONY 2011: April 18-22, New-York City, **59 attendees**
 - HARMONY 2012; Date unknown, location unknown http://www.surveymonkey.com/s/combine-harmony-hosting-interest

Mission 3: Developing Standard Operating Procedures

- Technical requirements
 - Who format covers what portion of the modeling space
 - Which technical solutions exist and must be used by the formats
 - How do formats interface
 - How to specify and document formats
 - ...
- Governance
 - How to initiate and maintain standardisation efforts
 - How to communicate with users and developers
 - How to develop a democratic and robust governance
 - ...

First tentative SOP: guidelines to develop a core COMBINE standard

- List the new development as a related standardization effort
- Join COMBINE community and attend meetings
- Comply with COMBINE criteria
 - Must cover aspects of modeling significantly different from the existing set of COMBINE standards
 - Must be described inprecise technical specification documents and formal specification languages
 - Specifications and other materials must be publicly available free of charge to everyone and be unencumbered by licensing restrictions
 - Development must be open. The entire COMBINE community must be able to participate without exclusion
 - Must be developed and used by more than a single team or organisation.
 - Development process must be led by democratically elected editorial boards
 - Mature software support must exist, including standard API implementations, and possibly validation tools
 - Development must be stable and active
- Decision by the coordinators (alt: vote of the community?)

Mission 4: Recognised voice

- COMBINE aims to become a "standardisation" body
 - This means a quality label. A "COMBINE standard" is a guarantee of stability, community endorsement, support etc.
 - COMBINE production can be used in SOPs at other organisations
 - COMBINE must be an actor on par with FGED, PSI, INCF etc.
- Single point of contact with user organisations including Industry
 - Tool developers (General platforms or specific tools)
 - Publishers
 - Pharmaceutical industry
- A point of contact for funding bodies
- A point of contact for legal entities, e.g. government and regulatory bodies

Where to find more information?

Acknowledgements

SBML editors: Frank Bergmann, *Andrew Finney, Stefan Hoops*, Michael Hucka, *Nicolas Le Novère,* Sarah Keating, Chris Myers, *Sven Sahle, Herbert Sauro*, Jim Schaff, Lucian Smith, *Darren Wilkinson*

SBGN editors: Emek Demir, Nicolas Le Novère, Huaiyu Mi, Stuart Moodie, *Falk Schreiber*, *Anatoly Sorokin*, Alice Villéger

BioPAX editors: Peter D'Eustachio, Oliver Ruebenacker, Andrea Splendiani

SED-ML editors: Richard Adams, Franck Bergmann, Nicolas Le Novère, Andrew Miller, David Nickerson, Dagmar Waltemath

Metadata: Mélanie Courtot, Nick Juty, Camille Laibe, Anna Zhukova

The whole community of Computational Systems Biology

Is the matrix of standards complete?

	ModelSimulationsdescriptionsand analysis		Numerical results
Minimal requirements	MIRIAM	MIASE	
Data-models	Solution BioPAX	SEDML	NuML?
Terminologies	<u>830</u>	KISAO	T E D D Y

Is the matrix of standards complete?

	ModelSimulationsdescriptionsand analysis		Numerical results
Minimal requirements	MIRIAM	MIASE	
Data-models	BioPAX	SEDML	NuML?
Terminologies	S30	KISAO	T E D D Y

Dimension 1: Covering the entire model life-cycle

Ţ	Model generation	Model structure	Parametrisation	Simulations and analysis	Numerical results
<u> Nature Procodings - doi:10.1038/npro 2011.6332 1 - Poetod 1 Sop 201</u>	?		?		NUML?

Dimension 2: Representing the levels of discourse

