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Cholesterol biosynthesis serves as a central metabolic hub for numerous biological processes 
in health and disease. An integrative knowledge representation of how the cholesterol 
pathway is structured and how it interacts with other pathway systems is lacking. Here we 
provide using Systems Biology Graphical Notation the research synthesis of a process 
diagram integrating the regulatory and feedback systems for cholesterol synthesis.

Cholesterol is an intensively studied, multi-functional lipid that is key to many aspects of immuno-
logical, neuronal, viral and hepatocyte biology. It is an essential component of cellular membranes 
and is a precursor to steroids, bile acids and vitamin D whilst its own precursors contribute to  
prenylation and dolichylation. As a consequence of its broad role, tightly regulated mechanisms  
have evolved to ensure intracellular homeostasis of the cholesterol biosynthesis pathway. 

Despite the importance of the sterol biosynthesis pathway to cellular function and its value in 
pharmaceutical therapies, an integrative picture of how the pathway is structured and how it 
interacts with other pathway systems has not been well described in the literature. 

Here, we present a pathway diagram that provides an integrative consensus view of the current 
level of understanding of the sterol biosynthesis pathway, its relationship with other pathways of 
note and its associated feedback mechanisms. This model of the sterol biosynthesis pathway has 
been assembled using a variety of publicly available resources including the research findings of 
the LipidMaps consortium (http://www.lipidmaps.org) and results obtained from thorough 
searches of the published literature that have been manually curated and validated by domain 
experts. It is most relevant to macrophage biology. 

The model that we present here is described using the Systems Biology Graphical Notation1 

(SBGN), a community driven consensus graphical schema for capturing the molecular details of 
pathway systems, although many other schema exist that can be used to provide alternative 
descriptions, such as mEPN2. The Systems Biology Graphical Notation Process Description 
language Level 1 scheme3 was used in a slightly modified form. We used a different shape for 
simple chemicals in order for compound names to fit within. The pathway names such as 
“cholesterol synthesis”  or “SREBP transport”  are also not a part of SBGN PD language and are 
used on the scheme for the readers’ benefit.

Together with the SBGN model, we include a simplified schematic that shows the relationship 
between the pathway subsystems that are related to cholesterol biosynthesis.





The model can be broadly described as a system that combines: cholesterol influx, cholesterol 
efflux, protein prenylation, dolychol synthesis, cholesterol synthesis, ER associated degradation 
of HMGCR, SREBP2 transport, oxysterol synthesis, the LXR pathway, SREBP2-induced gene 
expression and LXR-induced gene expression. 

We also include a list of the published literature from which the model has been assembled and 
a list of UniProt Ids for the proteins captured in the model. 

This is a multi-scale model that captures the details of absorption and efflux of cholesterol 
between the cell and the blood plasma. However, it is not completely exhaustive. The LDL and 
VDL transports systems are not captured. It describes the cholesterol processing that occurs in 
each organelle of the cell and the transcriptional control that mediates feedback to ensure 
cholesterol homeostasis.

Cholesterol biosynthesis itself constitutes a sequence of metabolic transitions that occur across 
several organelles, starting with the processing of acetyl-CoA in the mitochondria. This pathway 
branches into the protein prenylation arm, which has been shown to be critical to optimal CMV 
infection4, and the sterol arm that is responsible for cholesterol production. Feedback occurs 
through SREBP2 transport. The SCAP:SREBP2 complex, which ordinarily is chaperoned to the 
nucleus to activate the suite of enzymes associated with the cholesterol biosynthesis pathway, is 
instead retained in the endoplasmic reticulum, in the presence of relatively high concentrations 
of intracellular cholesterol or side-chain hydroxylated cholesterol, in particular 25-
hydroxycholesterol. This acts to down-regulate transcription of the enzymes acting on the sterol 
biosynthesis pathway until ordinary levels of cholesterol and its derivatives have been reached. 

It has been reported that SCAP:SREBP2 is significantly retained when cholesterol concentration 
exceeds 5% of total endoplasmic reticulum lipids5. However, it would appear that the sensitivity 
of the feedback mechanism to sterol levels is dependent on expression as overexpression of 
Insig-1 has been shown to lower this threshold to 3%5. 

INSIG1 is transcriptionally dependent on SREBP2, while INSIG2 is not6. When intracellular 
cholesterol rises, we would expect SREBP2 retention to lead to a fall in de novo INSIG1 
synthesis. As the free and unbound INSIG1 protein declines, this would lead to INSIG2 
becoming dominant in the process of SREBP2 retention. Differences between the affinity of 
INSIG1 and INSIG2 for complex formation will emerge at this point as a change to the 
feedback sensitivity. As cholesterol levels start to fall, retained SREBP2 will be increasingly 
transported to the nucleus, boosting INSIG1 synthesis and restoring the pool of INSIG1 protein 
available to respond to further fluctuations in cholesterol levels. 

This regulation impacts not just upon cholesterol, but also upon the oxysterols downstream of 
cholesterol and upon the LXR genes, downstream of the oxysterols. In the diagram presented, 
the transcriptional output of the genes affected has not been directly connected to the 
corresponding enzymes in the cholesterol biosynthesis pathway for the benefit of clarity. 

We hope that by elucidating and integrating the details of this pathway and its context, this will 
form the basis of a finer level of understanding of the pathway and its function and that this will 
add a greater insight to future studies of the sterol biosynthesis pathway.
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PROTEIN NAME UNIPROT ID SYNONYMS COMMENTS
ABCA1 O95477
ABCG1 P45844
ACAT1 P35610 SOAT1
ACAT2 O75908 SOAT2
AMFR Q9UKV5
AP2A1 O95782
AP2B1  P63010
AP2M1 Q96CW1
AP2S1 P53680
APOA1  P02647
APOB P04114
CAAX PROTEIN GENERIC 1 NA GENERIC
CAAX PROTEIN GENERIC 2 NA GENERIC
CETP P11597
CH25H O95992
CLATHRIN NA GENERIC
CYP27A1 Q02318
CYP3A4 P08684
CYP51A1 Q16850
CYP7A1  P22680
DAB2 P98082
DHCR24 Q15392
DHCR7 Q9UBM7
EBP Q15125
FDFT1 P37268
FDPS P14324
FNTA P49354
FNTB P49356
GGPS1 O95749
HDAC NA GENERIC
HMGCL P35914
HMGCR  P04035
HMGCS1  Q01581
HMGCS2 P54868
HSD17B7 P56937
IDI1 Q13907
IDI2  Q9BXS1
INSIG1 O15503
INSIG2 Q9Y5U4
LCAT  P04180
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PROTEIN NAME UNIPROT ID SYNONYMS COMMENTS
LDLR  P01130
LIPA P38571
LSS P48449
LXR NA GENERIC
LXRA Q13133 NR1H3
LXRB P55055 NR1H2
MVD P53602
MVK Q03426
NPC1 O15118
NPC2 P61916
NSDHL Q15738
PGGT1B P53609
PMVK  Q15126
RABGGTA  Q92696
RABGGTB P53611
RAB-XXCC/-XCXC/-CCXX PROTEIN 
GENERIC NA GENERIC
REP1 P24386
RXR NA GENERIC
RXRA P19793
RXRB P28702
RXRG P48443
S1P Q14703 MBTPS1
S2P O43462 MBTPS2
SAR1-GTP Q9NR31
SC4MOL Q15800
SC5D O75845
SCAP Q12770
SEC23 NA GENERIC
SEC24 NA GENERIC
SQLE Q14534
SR-B1  Q8WTV0
SREBP2  Q12772
TM7SF2 O76062
UBE2G1 P62253
UFD1 Q92890 UFD1L
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