1 Convergence of atmospheric and North Atlantic CO₂ trends on

2 <u>multidecadal timescales</u>

- 3 Galen A. McKinley¹*, Amanda R. Fay¹, Taro Takahashi² and Nicolas Metzl³
- ⁴ ¹Atmospheric and Oceanic Sciences, University of Wisconsin Madison, 1225 W. Dayton
- 5 St., Madison, Wisconsin, 53706, USA.²Lamont Doherty Earth Observatory of Columbia
- 6 University, P.O. Box 1600, 61 Route 9W, Palisades, New York, 10964, USA. ³LOCEAN-
- 7 IPSL, CNRS, Institut Pierre Simon Laplace, Universite Pierre et Marie Curie, Case 100,
- 8 4 Place Jussieu, 75252, Paris Cedex 5, France.

9 The oceans' carbon uptake substantially reduces the rate of anthropogenic carbon 10 accumulation in the atmosphere¹, and thus slows global climate change. Some 11 diagnoses of trends in ocean carbon uptake have suggested a significant weakening 12 in recent years²⁻⁸, while others conclude that decadal variability confounds detection 13 of long-term trends⁹⁻¹¹. Here, we study trends in observed surface ocean partial 14 pressure of CO₂ (pCO₂) in three gyre-scale biomes of the North Atlantic, considering 15 decadal to multidecadal timescales between 1981 and 2009. Trends on decadal 16 timescales are of variable magnitudes and depend sensitively on the precise choice of 17 years. As more years are considered, oceanic pCO₂ trends begin to converge to the 18 trend in atmospheric pCO₂. North of 30°N, it takes 25 years for the influence of 19 decadal-timescale climate variability to be overcome by a long-term trend that is 20 consistent with the accumulation of anthropogenic carbon. In the permanently 21 stratified subtropical gyre, warming has recently become a significant contributor 22 to the observed increase in oceanic pCO₂. This warming, previously attributed to

23 both a multidecadal climate oscillation and anthropogenic climate forcing^{12,13}, is

24 beginning to reduce ocean carbon uptake.

33

25 The ocean is the ultimate long-term sink for anthropogenic carbon, having taken up 26 approximately 30% of anthropogenic emissions from preindustrial times to 1994¹. 27 Anthropogenic climate change may drive physical and biogeochemical shifts in the ocean 28 that result in reduced efficiency of this sink. Detection of such "climate-carbon 29 feedbacks" is of great interest, but is complicated by the influence of poorly-quantified 30 decadal timescale variability^{2-11,14,15}. 31 Previous studies have estimated trends in the North Atlantic carbon sink from oceanic 32 pCO₂ data and numerical model output for recent decades, but have not agreed as to its

direction and magnitude^{2-11,16}. Comparison of these studies is complicated by the different

34 time periods, regions, and methodologies used. Distinct from previous studies, we

determine trends in oceanic pCO_2 from data across three (3) large biogeographic regions

36 ("biomes")¹⁷ that together occupy 87% of the total area of the North Atlantic (Figure 1a).

37 The northern seasonally stratified subpolar gyre (SP-SS) biome is cold and biologically

38 productive, the southern permanently stratified subtropical gyre (ST-PS) biome is warm

39 and has low productivity, and between these extremes is the seasonally stratified

40 subtropical (ST-SS) biome. Our focus on biome-scale trends is motivated by relevance to

41 the global scale partitioning of CO_2 between the atmosphere and the ocean.

Our methodology takes advantage of the strengths of both methods previously used to
study trends in the ocean carbon uptake potential: (1) pCO₂ observations from surface
seawater and air, and (2) numerical models. The results we present are based solely on

45 analysis of the data. The suitability of the methodology used to derive these results is 46 double-checked by taking advantage of a numerical model that is subsampled as the data, 47 and the resulting trend estimates are then compared to trends calculated from all model 48 points (see Methods and Supplementary Information, sections 1 and 2). Our data are 49 1,116,539 each for oceanic pCO₂ and sea surface temperature (SST) from $1981-2009^{18}$, 50 and 797 dissolved inorganic carbon (DIC), alkalinity (ALK), sea surface salinity (SSS) 51 and SST observations along a commercial shipping route between Iceland and Newfoundland (SURATLANT, SURveillance ATLANTique) for 1993-2007^{5,6}, from 52 which pCO_2 values were computed¹⁹. We compare trends of oceanic pCO_2 to those for 53 atmospheric pCO₂ estimated from a global observational network²⁰ for each biome. Since 54 55 the air-sea CO_2 flux is proportional to the sea-air p CO_2 difference, it has previously been 56 assumed that if the rate of increase in oceanic pCO_2 is faster than the rate of increase in 57 atmospheric pCO₂, then the ocean carbon sink of that region is declining, and vice versa; 58 and, that if the rate of change of oceanic pCO_2 is statistically indistinguishable from that of atmospheric pCO₂, then the carbon sink in that region is steady^{4-7,10}. However, this is 59 60 not strictly true since both temperature change and modification of dissolved inorganic 61 carbon and alkalinity through surface freshwater fluxes or circulation variability could 62 change oceanic pCO_2 without CO_2 uptake from or release to the atmosphere. In this 63 study, we do compare rates of increase of oceanic and atmospheric pCO_2 , but the strength 64 of the carbon sink is interpreted in more detail based on decomposition of oceanic pCO₂ trends into two driving components²¹. The pCO₂-T trend is the part of an oceanic pCO₂ 65 66 trend driven by SST change, and thus indicates the influence of changing physics, for 67 example surface heat fluxes and heat advection. The pCO₂-nonT trend indicates

68	accumulation or loss of carbon in the surface ocean or other chemical changes that
69	modify oceanic pCO ₂ . For only SURATLANT, more detailed chemical data allows a
70	further decomposition of oceanic pCO_2 change into a part associated with carbon
71	accumulation or loss (dissolved inorganic carbon is directly related to oceanic pCO_2) and
72	a part associated with the charge balance of major ions (alkalinity is inversely related to
73	oceanic pCO ₂). All trends are presented with 1σ uncertainty bounds ² , and as in previous
74	studies ⁵⁻⁷ , an indistinguishable difference between trends occurs when these bounds
75	overlap (see Methods).
76	For 1981-2009, trends in oceanic pCO_2 are indistinguishable from trends in atmospheric
77	pCO ₂ in all biomes (Figure 1a; Figure 1c, gray bars). Trends are due to changing
78	chemistry of the surface ocean (pCO ₂ -nonT) in all biomes (Figure 1c, green bars), which
79	is consistent with a long-term oceanic equilibration with atmospheric pCO_2 . Additionally,
80	in the permanently stratified subtropical gyre (ST-PS) there is a significant contribution
81	to the oceanic pCO_2 trend from rising temperatures (Figure 1c, blue bars).
82	Between the mid-1990's and mid-2000's, the North Atlantic Oscillation transitioned from
83	a strong positive to a neutral or slightly negative phase, and at the same time, the longer-
84	term Atlantic Multidecadal Variation transitioned from a negative to a positive phase ^{12,22} .
85	A trend analysis for the period 1993-2005 is indicative of oceanic pCO_2 trends driven by
86	such climatic transitions. Comparison of oceanic pCO_2 to atmospheric pCO_2 trends
87	(Figure 1b) differs among the 3 biomes for this 13 year period: indistinguishable in the
88	subpolar biome (SP-SS); oceanic pCO ₂ increasing more rapidly in seasonally stratified
89	subtropical biome (ST-SS); and oceanic pCO_2 increasing more slowly in the permanently
90	stratified subtropical gyre biome (ST-PS).

91	In the subpolar biome for 1993-2005, both warming and chemistry drive the positive
92	trend in oceanic pCO ₂ (Figure 1d). For SURATLANT, contained within the subpolar
93	biome, warming was responsible for the increase in oceanic pCO_2 and chemistry changes
94	were negligible ^{2,5,6} . Alkalinity and dissolved inorganic carbon data allow further
95	decomposition of the chemical change (Figure 1d, inset; ref. 10), which reveals that
96	increasing sea surface salinity ²² and decreasing salinity-normalized alkalinity (sALK)
97	drove up oceanic pCO ₂ . If salinity changes were only due to surface fluxes of freshwater,
98	then the alkalinity / dissolved inorganic carbon ratio should not have changed and the
99	impact on oceanic pCO ₂ by pCO ₂ -SSS should have been small. The fact that the pCO ₂ -
100	SSS trend is not small suggests that the alkalinity / dissolved inorganic carbon ratio
101	of waters mixing into the area did change ⁶ . Salinity-normalized dissolved inorganic
102	carbon (sDIC) does not drive a significant trend in oceanic pCO_2 in SURATLANT, which
103	is consistent with little or no net carbon accumulation in the western subpolar gyre from
104	1993-2005 ^{6,10} . Yet, the positive trend in pCO_2 -nonT for the entire subpolar gyre biome is
105	consistent with some larger-scale carbon accumulation, which is consistent with
106	observations in the Norwegian Sea ²³ . In this biome, with the North Atlantic Oscillation
107	and Atlantic Multidecadal Variation phase transition from the mid-1990's to the mid-
108	2000's, warming and reduced surface buoyancy loss led to reduced deep convection, less
109	injection of cold waters to the gyre core, and thus, a slowing of the subpolar gyre's
110	geostrophic circulation ^{22,24,25} . This analysis identifies the same warming trend and, at the
111	same time, suggests a lowered rate of pCO_2 -nonT increase in SURATLANT and the
112	subpolar biome that is consistent with reduced vertical supply of dissolved inorganic
113	carbon from the deep ocean ¹⁰ . This SURATLANT / subpolar biome comparison also

- 114 highlights the fact that biome-scale, spatially-integrated trends do not preclude the
- 115 existence of different trends at smaller scales $^{2,4-6,10,13}$.

116 In the seasonally stratified subtropical biome (ST-SS) for 1993-2005 there is a larger rate 117 of oceanic pCO_2 increase than atmospheric pCO_2 , driven by the chemistry term (Figure 118 1d)^{4,7}. The aforementioned changes in the subpolar gyre circulation have been associated with a slowing of the surface circulation^{11,22,24} and a reduced supply of low dissolved 119 120 inorganic carbon waters from the subtropics along the North Atlantic Current⁹. This is 121 consistent with increased dissolved inorganic carbon accumulation in ST-SS (Figure 1d 122 for 1993-2005, green bar larger than in Figure 1c for 1981-2009). Finally, for 1993-2005 123 in the subtropical gyre biome (ST-PS, Figure 1b,d), oceanic pCO₂ went up more slowly 124 than atmospheric pCO_2 , with the oceanic increase driven by both warming and chemical 125 change consistent with carbon accumulation.

126 Across the North Atlantic, biome-scale trends in oceanic pCO₂ are more similar to trends

127 in atmospheric pCO_2 on long timescales than on short ones. How does the system

128 transition from the shorter-timescale regime, significantly modulated by temperature

129 changes, a proxy for the influence of decadal-timescale variability (Figure 1b,d), to the

130 long-term regime more influenced by carbon accumulation (Figure 1a,c)? Given the

131 sparse data, we would also like to know the sensitivity of oceanic pCO_2 trend estimates to

the choice of years for a trend analysis.

133 Figure 2 is a comparison of oceanic pCO_2 trends to atmospheric pCO_2 trends for start

134 years ranging from 1981 to 1993 and end years ranging from 2001 to 2009. For

135 timeseries shorter than 25 years in the subpolar biome (SP-SS, Figure 2a), estimated

136 trends vary significantly based on the choice of years, and pCO_2 -T trends are frequently 137 greater than zero. However, for timeseries at least 25 years long, oceanic pCO₂ trends are, 138 with only one exception, consistent with atmospheric pCO_2 . For these long timeseries, 139 warming contributes to the oceanic pCO₂ trend only for timeseries starting in 1981; 140 chemistry otherwise drives trends. Convergence of the oceanic pCO_2 trends to the 141 atmospheric pCO₂ trend for timeseries longer than 25 years is a robust feature, and the 142 fact that temperature trends are largely indistinguishable from zero suggests that carbon 143 accumulation is the primary driver of these trends. However, a long-term waning 144 influence of pCO₂-T is not entirely clear, given that timeseries starting in 1981 continue 145 to be influenced by warming; and thus, multi-decadal climate variability may still be influencing subpolar biome pCO₂ trends^{12,13,25} over the full period for which data is 146 147 available. In the seasonally stratified subtropical biome (ST-SS, Figure 2b) oceanic pCO₂ 148 trends are also sensitive to the choice of years for short timeseries. Beyond 25 years, 149 oceanic pCO₂ trends are, with only one exception, indistinguishable from atmospheric 150 pCO₂ trends. Intriguingly, warming significantly influences only one oceanic pCO₂ trend 151 in ST-SS (Figure 2b, stippled; 1981-2001), indicating that chemical changes dominate 152 these trends. These chemical changes are likely driven by variations in horizontal advection and vertical mixing^{9,10,13}. In the permanently stratified subtropical gyre biome 153 154 (ST-PS, Figure 2c), oceanic pCO₂ trends are generally the same as atmospheric pCO₂. 155 However, in contrast to the northern biomes, the influence of warming on pCO₂ trends 156 increases as years after 2006 are included (Supplementary Information, section 4; 157 Supplementary Figure 8). With oceanic pCO_2 trends indistinguishable from atmospheric 158 pCO_2 , pCO_2 -T trends greater than zero require pCO_2 -nonT trends to be less than

159 atmospheric pCO_2 (Figure 1c,d), which suggests that warming is damping ocean carbon 160 uptake. The fact that this applies to almost all trends with end years 2006 to 2009, 161 irrespective of start year, suggests that oscillatory behavior on interannual to decadal 162 timescales is not strongly at play; instead this finding is consistent with a long-term 163 tendency over these 29 years. The Atlantic Multidecadal Variation has a period of about 60 years, and likely explains some of this trend^{6,12,13,22}. Anthropogenic forcing appears to 164 165 be the other part of the explanation¹², and thus the increasing likelihood of a statistically 166 significant influence of warming temperatures on oceanic pCO₂ trends in the subtropical 167 gyre is consistent with a climate-carbon feedback by which anthropogenic warming 168 reduces the ocean's ability to remove anthropogenic carbon from the atmosphere. 169 For both decadal and multi-decadal timescales, we find less dramatic amplitudes of 170 recent trends in the North Atlantic surface ocean pCO_2 than others have suggested²⁻⁷. This 171 is due, in part, to the fact that we estimate trends from observations across much larger, 172 gyre-scale, regions than previously considered. Our parallel analysis with a numerical 173 model indicates that sampling is sufficient for recovery of gyre-average oceanic pCO_2 174 trends, but uncertainty is still significant and will be best reduced with additional data. At 175 the 1σ confidence level, we are able to detect short-term shifts in oceanic pCO₂, reasonably explained by climate variability⁹⁻¹¹, and north of 30°N, long-term oceanic 176 177 pCO₂ trends that track the rate of atmospheric pCO₂ increase. A significant role for the 178 seasonally stratified biomes of the North Atlantic in the proposed multi-decadal increase 179 in the atmospheric fraction of anthropogenic $CO_2^{8,26,27}$ is not distinguishable. However, in 180 the North Atlantic permanently stratified subtropical gyre we do find an increasing 181 influence on oceanic pCO_2 by a warming trend that is partially due to anthropogenic

forcing¹². This is evidence of a climate-carbon feedback that is beginning to limit the
strength of the ocean carbon sink.

184 **Methods Database of pCO₂**^{s.ocean}. Direct oceanic pCO₂ (pCO₂^{s.ocean}) measurements were made using 185 186 air-seawater equilibration methods, and quality controlled and compiled as described in detail by Takahashi et al. $(2009)^{18}$. We use data only within 0°N - 85°N, 100°W - 20°E. 187 188 Coastal influences were eliminated by excluding data with SSS ≤20 pss. SURATLANT data^{5,6} was merged to help with poor coverage in the early 2000's, resulting in 1,206,507 189 190 observations from 1981-2009, and of these, 1,117,336 points fall in our three biomes 191 (Supplementary Table 1). 192 SURATLANT. Data were collected between Iceland and Newfoundland (ref. 5,6 through 2007). pCO₂^{s.ocean} is calculated from measurements of DIC, SST, SSS, and ALK 193 194 for 1993-1997 and 2001-2007 using accepted constants¹⁹. For 2001-2007, ALK was 195 directly measured. For 1993-1997, ALK was estimated from the ALK-SSS relationship 196 derived from 2001-2006 data (ALK = $43.857 \times SSS + 773.8$). We use open-ocean data from 50-64°N, 25-50°W. For comparison to previous work², we also study six $5^{\circ}x5^{\circ}$ 197 198 regions (Figure 1b,d, Supplementary section 3, Supplementary Figure 6, Supplementary 199 Tables 2 and 3). Climatologies. The revised version (June 2009) of climatological mean pCO₂^{s.ocean} at 4° 200 (latitude) x 5° (longitude) resolution for reference year 2000^{14} is used. We use 201 climatological SST²⁸, SSS²⁹, DIC and ALK³⁰. 202 **Trend in pCO_2^{atm}.** A biome-average pCO_2^{atm} trend is calculated from the NOAA ESRL 203

204 GLOBALVIEW- CO_2^{20} reference marine boundary layer matrix xCO_2 using monthly

205	mean values regridded to a 1°x1° grid, and surface pressure of 1 atm. The trend (b) is
206	determined by a fit to $y = a + b^{*}t + c^{*}\cos(2\pi t + d)$, where $t = decimal year -1990$.
207	Biomes. Biomes ¹⁷ were assigned based on annual maximum mixed layer depth (MLD),
208	annual mean SeaWiFS chlorophyll-a, and SST ²⁸ at 1°x1° resolution. MLD uses a surface
209	to depth density ²⁹ difference of 0.125 kg/m ³ . The seasonally stratified subpolar gyre
210	biome (SP-SS) has chlorophyll ≥ 0.45 mg/m ³ and SST 5-15°C. The seasonally stratified
211	subtropical biome (ST-SS) biome has MLD >160m and chlorophyll <0.45 mg/m ³ . The
212	permanently stratified subtropical biome (ST-PS) has MLD ≤ 160 m, SST $\geq 15^{\circ}$ C and
213	chlorophyll $<0.2 \text{ mg/m}^3$. In the sea ice and low latitude upwelling biomes of ref. 17, there
214	is insufficient data for analysis. See also Supplementary Information, section 1.
215	Estimation of $pCO_2^{s.ocean}$ trends for the biomes.
216	i. Data are gridded to 1° x 1° spatial and then monthly temporal resolution.
217	ii. Long-term mean removed to eliminate spatial aliasing
218	iii. Data is averaged to the biomes, SURATLANT and its subregions.
219	iv. A harmonic of the form $y = a + b^*t + c^*\cos(2\pi t + d)$, where $t = decimal year$ -
220	1990, is fit. Trends reported are the value of b (in matm/yr) resulting from this fit.
221	Alternative trend analysis approaches were tried, but do not strongly influence results
222	(Supplementary Information, section 1).
223	Trend uncertainty and trend comparisons. We present the 1σ confidence intervals

224 (68.3%) calculated via:

225
$$CI_b = \pm t * RMSE * \sqrt{\frac{1}{\sum (X_i - \overline{X})^2}}$$

Where t is the two-tailed t-statistic for 68.3% confidence for N-4 degrees of freedom
(DOF), with N being the number of months; RMSE is the root mean square error; X_i are

the data; and \overline{X} is the mean value. Distinguishability of trends determined by a student ttest with t* calculated from the data using:

230
$$t^* = \frac{b_{s.ocean} - b_{atm}}{\sigma_e / S_{xx}}$$

231 where $b_{s,ocean}$ is the surface ocean trend, b_{atm} is the atmospheric trend, σ_e is the sum of

squared errors (SSE) divided by the DOF, and S_{xx} is calculated by $\sum_{i}^{N} (x_i - \bar{x})^2$. If t* is

233 greater than $T_{(.683)}$ given the DOF, then the atmospheric and pCO₂^{s.ocean} trends are

234 significantly different. If t*< T then the trends are not significantly different (p-values

are greater than 0.317).

236 **Regional physical-biogeochemical model.** Setup, forcing, ecosystem and carbon system

237 details of the North Atlantic model at 0.5° x 0.5° horizontal resolution (MITgcm.NA)

have been previously described¹⁰, and has been extended to 1948-2009. The model

239 compares well to physical and biogeochemical observations (Supplementary Figures 1

and 2; ref. 10). When sampling the model as the data, we do so at daily time and model

spatial resolution, and then treat the sampled model as the data, using the model

climatology in step (ii) of the analysis. We conclude that our methodology, applied to the

243 available data, can capture real biome-scale trends in $pCO_2^{s.ocean}$ if trends from the model

sampled as the data are within the 1σ uncertainty bounds of the trends estimated from all

245 model points (Supplementary Information, section 2, Supplementary Figure 3).

Decomposition of pCO₂^{s.ocean}. $pCO_2^{s.ocean}$ is decomposed using empirical equations²¹ into

247 the isochemical component due to temperature (pCO₂-T) and the remaining variability

248 (pCO₂-nonT). For SUR, we can also use the full equations to determine variability in

249	$pCO_2^{s.ocean}$ driven individually by SSS, DIC, and ALK ¹⁰ . We determine pCO_2^{-s} DIC and
250	pCO_2 -sALK by making the calculations with salinity normalized DIC and ALK (sDIC =
251	35*DIC/SSS; sALK = 35*ALK/SSS) and adding the difference from the non-normalized
252	component (pCO ₂ -DIC - pCO ₂ -sDIC and pCO ₂ -ALK - pCO ₂ -sALK) to pCO ₂ -SSS, which
253	includes salinity variation effects only in pCO ₂ -SSS.

References

256	1.	Denman, K.L. et al. Couplings Between Changes in the Climate System and
257		Biogeochemistry. In: Climate Change 2007: The Physical Science Basis.
258		Contribution of Working Group I to the Fourth Assessment Report of the
259		Intergovernmental Panel on Climate Change [Solomon, S. et al (eds.)].
260		Cambridge University Press, Cambridge, United Kingdom (2007).
261	2.	Schuster, U. et al. Trends in North Atlantic sea-surface fCO2 from 1990 to 2006.
262		Deep-Sea Res. II 56, 620-629 (2009).
263	3.	Watson, A. J. et al. Tracking the variable North Atlantic sink for atmospheric
264		CO2. Science 326 , 1391-1393 (2009).
265	4.	Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nature
266		<i>Geoscience</i> 2 , 831-836 (2009).
267	5.	Corbiere, A., Metzl, N., Reverdin, G., Brunet, C. & Takahashi, T. Interannual and
268		decadal variability of the oceanic carbon sink in the North Atlantic subpolar gyre.
269		<i>Tellus B</i> 59 , 168-178 (2007).

270	6.	Metzl, N. et al. Recent acceleration of the sea surface fCO2 growth rate in the
271		North Atlantic subpolar gyre (1993-2008) revealed by winter observations.
272		Global Biogeochem.Cycles. 24, GB4004 (2010).
273	7.	Le Quéré, C., Takahashi, T., Buitenhuis, E.T., Rödenbeck, C. & Sutherland, S.C.
274		Impact of climoate change on the global oceanic sink of CO2. Global
275		Biogeochem.Cycles. 24, GB4007 (2010).
276	8.	Canadell, J. et al. Contributions to accelerating atmospheric CO2 growth from
277		economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl.
278		Acad. Sci. 104, 18886-18870 (2007).
279	9.	Thomas, H. et al. Changes in the North Atlantic Oscillation influence CO2 uptake
280		in the North Atlantic over the past 2 decades. Global Biogeochem. Cycles 22,
281		GB4027 (2008).
282	10	. Ullman, D.J., McKinley, G.A., Bennington, V. & Dutkiewicz S. Trends in the
283		North Atlantic carbon sink: 1992–2006. Global Biogeochem. Cycles 23, GB4011
284		(2009).
285	11	. Gruber, N. Fickle trends in the ocean. Nature 458, 155-156 (2009).
286	12	. Ting, M-F., Kushnir, Y., Seager, R., & Li, C-H. Forced and Internal Twentieth-
287		Century SST Trends in the North Atlantic. J. Climate 22, 1469-1481 (2009).
288	13	. Löptien, U., & C. Eden. Multidecadal CO2 uptake variability of the North
289		Atlantic. J. Geophys. Res. 115, D12113 (2010).
290	14	. Takahashi, T. et al. Climatological mean and decadal change in surface ocean
291		pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res. II 56, 554-
292		577 (2009).

293	15. Bates, N.R. Interannual variability of the oceanic CO2 sink in the subtropical gyre
294	of the North Atlantic Ocean over the last 2 decades, J. Geophys. Res. 112,
295	C09013 (2007).
296	16. Rödenbeck, C. Estimating CO2 sources and sinks from atmospheric
297	concentration measurements using a global inversion of atmospheric transport
298	(Tech. Rep. 6, http://www.bgc-
299	jena.mpg.de/~christian.roedenbeck/download_CO2/ , Max-Planck-Inst. for
300	Biogeochem. Jena, 2005).
301	17. Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Global
302	Biogeochem. Cycles 18, GB3003 (2004).
303	18. Takahashi, T., Sutherland, S.C. & Kozyr, A. Global Ocean Surface Water Partial
304	Pressure of CO_2 Database: Measurements Performed during 1957-2009 (Version
305	2009). (ORNL/CDIAC-152, NDP-088r. CDIAC, ORNL, US DOE, Oak Ridge,
306	Tennessee, doi:10.3334/CDIAC/otg.ndp088r, 2010).
307	19. Follows, M., Ito, T., & Dutkiewicz, S. On the solution of the carbonate chemistry
308	system in ocean biogeochemistry models. Ocean Model. 12, 290-301 (2006).
309	20. GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project -
310	Carbon Dioxide, Reference Matrix. (CD-ROM, ftp.cmdl.noaa.gov, Path:
311	ccg/co2/GLOBALVIEW, NOAA ESRL, Boulder, CO, 2010).
312	21. Takahashi, T. <i>et al</i> . Global sea-air CO_2 flux based on climatological surface ocean
313	pCO ₂ , and seasonal biological and temperature effects, Deep-Sea Res. II 49 ,
314	1601-1622 (2002).

- 315 22. Reverdin, G. North Atlantic subpolar gyre surface variability (1895-2009). J.
- 316 *Climate* **23**, JCLI3493.1 (2010).
- 317 23. Skjelvan, I. Falck, E. Rey, F. & Kringstad, S.B. Inorganic carbon time series at
- 318 Ocean Weather Station M in the Norwegian Sea. *Biogeosci.* **5**, 549-560 (2008).
- 319 24. Häkkinen, S. & Rhines, P.B. Shifting surface currents in the northern North
- 320 Atlantic Ocean. J. Geophys. Res. **114**, C04005 (2009).
- 321 25. Lozier, M.S. *et al.* The spatial pattern and mechanisms of heat-content change in
 322 the North Atlantic. *Science* 319, 800 (2008).
- 323 26. Knorr, W. Is the airborne fraction of anthropogenic CO2 emissions increasing?
 324 *Geophys. Res. Lett.* 36, L21710 (2009).
- 325 27. Sarmiento, J.L. *et al.* Trends and regional distributions of land and ocean carbon
 326 sinks. *Biogeosci.* 7, 2351-2367 (2010).
- 327 28. Reynolds, R.W., *et al.* Daily high-resolution-blended analyses for sea surface
 328 temperature, *J. Climate* 20, 5473-5496 (2007).
- 329 29. World Ocean Atlas 2005, Volume 1 and 2. S. Levitus, Ed. (NOAA Atlas NESDIS
- 330 61, U.S. Government Printing Office, Washington, D.C., 2005).
- 331 30. Key, R. *et al.* A global ocean carbon climatology: Results from Global Data
 332 Analysis Project (GLODAP). *Global Biogeochem.Cycles* 18, GB4031 (2004).
- 333
- Author Information: Correspondence and requests for materials should be addressed toG.A.M. (gamckinley@wisc.edu).
- 336 Acknowledgements G.A.M. and A.R.F. acknowledge funding from NASA (07-NIP07-
- 337 0036). The SURATLANT Project is supported by Institut National des Sciences de

- 1'Univers (INSU, as contribution of the ORE SSS) and Institut Paul Emile Victor (IPEV)
- in France. This work was also supported by French program LEFE/FlamenCO2, a
- 340 component of SOLAS-France and European Integrated Project CARBOOCEAN
- 341 (511176). T.T. is supported by a NOAA grant (NA080AR4320754).
- 342
- 343 Author Contributions G.A.M designed the study and wrote the manuscript. A.R.F. did
- 344 the data analysis. T.T. developed the oceanic pCO_2 database. N.M. synthesized the
- 345 SURATLANT data. All authors discussed and revised the manuscript.
- 346 **Supplementary Information** accompanies the paper at
- 347 <u>www.nature.com/naturegeoscience</u>.
- 348
- 349 Figure Captions
- 350 Figure 1: Trends in oceanic pCO₂ for (a) 1981-2009 and (b) 1993-2005 compared to
- atmospheric pCO₂ trend ²⁰. (a,b) Dark blue for oceanic pCO₂ trend less than
- atmospheric pCO₂ trend; pink for indistinguishable; red for larger oceanic trend; (b)
- includes SURATLANT (SUR) and $5^{\circ}x5^{\circ}$ subregions (b, inset)^{2,5,6}. (c,d) Oceanic pCO₂
- trends (gray), temperature (pCO₂-T, light blue) and chemical (pCO₂-nonT, green)
- 355 components, with 1σ uncertainty, and atmospheric pCO₂ trend (dash). (d, inset)
- 356 Decomposition of pCO₂ for SURATLANT to salinity-normalized dissolved inorganic
- 357 carbon (pCO₂-sDIC), salinity-normalized alkalinity (pCO₂-sALK), and salinity (pCO₂-
- 358 SSS) components. See also Supplementary Information, section 3, Supplementary
- 359 Figures 4-6 and Supplementary Tables 4-5.

- 360 Figure 2: Trend in oceanic pCO₂ vs. atmospheric pCO₂, variable years. (a) Seasonally
- 361 stratified subpolar, SP-SS (b) Seasonally stratified subtropical, ST-SS and (c)
- 362 Permanently stratified subtropical, ST-PS. Colors as Figure 1a,b. Stippling for pCO₂-T
- trend distinguishable from zero (dot > 0; dark < 0); and in most of these cases (86%), the
- pCO_2 -nonT trend is also distinguishable from the atmospheric pCO_2 trend. Bold lines at
- timeseries of 10, 15, 20, 25 year lengths. Crosses are 1981-2009, Figure 1a,c; stars are
- 366 1993-2005, Figure 1b,d. White if sampling insufficient (Supplementary Information
- 367 section 3). See also Supplementary Information, section 3, and Supplementary Figure 7.

Figure 1

