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Sufficient statistics
The Likelihood principle states that all the information about
parameter θ is contained in the likelihood function f (x |θ). This
principle is complemented by the sufficiency principle. Here a
summary statistic of the general form

S : RD −→ Rw , S(x) = s

with w � D typically, is called sufficient if

f (X |S(x) = s, θ) = f (x |S(x) = s)

ie the likelihood is independent of the parameter conditional on the
value of the summary statistic. The likelihood can then generally
be written in the Neyman-Fisher factorized form

f (X |θ) = g(X )h(S(X )|θ)

where g(X ) is independent of the parameter θ. Thus h(S(X )|θ)
carries all the information about the parameter
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ABC, sufficient statistics and model selection

Consider a finite set of models M = {M1, . . . ,Mq}, each of which
has an associated parameter vector θm, 1 ≤ m ≤ q. We aim to
perform inference on the joint space over models and parameters,
(m, θm).

p(M = m|x) =

∫
Θm

f (x |θm)π(θm)dθmπ(m)∑q
i=1

∫
Θi

p(x |θi )π(θi )dθiπ(i)
.

We can apply ABC by replacing evaluation of the likelihood in
favour of comparing simulated and real data for different
parameters drawn from the posterior, whence we obtain

p(M = m|x) ≈
∫

Θm

∫
Ω 1(∆(x , y) ≤ ε)f (y |θm)π(θm)dθmdy π(m)∑q

i=1

∫
Θi

∫
Ω 1(∆(x , y) ≤ ε)f (y |θi )π(θi )dθidy π(i)

,

which is exact once ε −→ 0.
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ABC, sufficient statistics and model selection (2)

The same is no longer true, however, once the complete data have
been replaced by summary statistics. So in general

p(M = m|x) 6=∫
Θm

∫
Ω 1(∆(Sm(x),Sm(y) ≤ ε)h(Sm(y)|θm)π(θm)dθmdy π(m)∑q

i=1

∫
Θi

∫
Ω 1(∆(Si (x), Si (y)) ≤ ε)h(Si (y)|θi )π(θi )dθidy π(i)

.

An equality can only hold if the factors gi (x), 1 ≤ i ≤ q are all
identical. Otherwise the different levels of data-compression are
lost and unbiased model selection is no longer possible.

Chris Barnes Sufficiency for ABC model selection Introduction 4 / 23

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.5

95
2.

1 
: P

os
te

d 
13

 M
ay

 2
01

1



Reviving ABC model selection

While we do agree that problems arise when using inadequate (or
insufficient) statistics for model selection

I this mirrors problems that can also be observed in the
parameter estimation context.

I for many important applications of ABC this problem can be
elegantly avoided by using the whole data rather than
summary statistics.

I in cases where summary statistics are required we argue that
we can construct approximately sufficient statistics in a
disciplined manner using notions from information theory.
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Reviving ABC model selection

While we do agree that problems arise when using inadequate (or
insufficient) statistics for model selection

I this mirrors problems that can also be observed in the
parameter estimation context.

ABC parameter inference for θ where y1....m ∼ N(θ = 1, 1)
Use as summary statistics: mean, variance, min and max.
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I for many important applications of ABC this problem can be
elegantly avoided by using the whole data rather than
summary statistics.

I in cases where summary statistics are required we argue that
we can construct approximately sufficient statistics in a
disciplined manner using notions from information theory.
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Entropy, conditional entropy and mutual information
The entropy of X , denoted by H, measures the uncertainty of X
and is defined as follows

H(X ) = −
∑
x

p(x) log p(x) = −Ep(X ) [log p(X )] ≥ 0 .

The conditional entropy H(Y |X ) is defined as

H(Y |X ) = −Ep(X ,Y ) [log p(Y |X )] .

The mutual information I (X ; Y ) measures the amount of
information that Y contains about X . It can be seen as the
reduction of the uncertainty of X due to the knowledge of Y :

I (X ; Y ) = H(X )− H(X |Y ) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)

= KL(p(X ,Y )||p(X )p(Y )) ≥ 0 .

I (X ; Y ) = 0 if and only if X and Y are independent.
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Data processing inequality and sufficient statistics
The DPE states that for random variables X , Y , and Z such that
X → Y → Z , (i.e. Y depends, deterministically or randomly, on X
and Z depends on Y )

I (X ; Y ) ≥ I (X ; Z ),

with equality only if X → Y → Z forms a Markov Chain which
means that p(X ,Z |Y ) = p(X |Y )p(Z |Y ).
Now consider a family of distributions {fθ(.)} indexed via θ and let
X be a sample from a distribution in this family. Let S be a
deterministic statistic of X then θ → X → S . By the DPE

I (θ; S) ≤ I (θ; X ) .

A statistic S is said to be sufficient with underlying parameter θ if
and only if S contains all the information in X about θ that is

I (θ; S) = I (θ; X ) .
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Results for sufficient statistics (1)

The conditional mutual information of discrete random variables
X , Y and Z is defined as

I (X ; Y |Z ) = H(X |Z )− H(X |Y ,Z ) .

It is the reduction in uncertainty of X due to knowledge of Y when
Z is given. This quantity is null if and only if X and Y are
conditionally independent given Z , which means that Z contains
all the information about X in Y .

Result 1

S is a sufficient statistic with underlying parameter θ if and only if

I (θ; X |S) = 0 .

This states that conditional on S there is no further information in
X on θ.
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Results for sufficient statistics (2)

Suppose that we have a finite set of deterministic statistics
S = {S1, . . . ,Sn} and assume that S is a sufficient statistic. We
aim to identify a subset U of S which is sufficient for θ. The
following result characterizes such a subset.

Result 2

Let S be a finite set of deterministic statistics of X and assume
that S is a sufficient statistic. Let U be a vector composed of
elements of S . The following statements hold

U is a sufficient statistic

⇔ I (θ; S |U) = 0

⇔ Ep(X ) [KL(p(θ|S)||p(θ|U)) = 0] .
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Algorithm 1: Minimization of I (θ; X |S)

1: input: a sufficient set of deterministic statistics whose values
on dataset is s∗ = {s∗1 , . . . , s∗n}

2: output: a subset U∗ of s∗

3: for all u∗ ⊂ s∗ do
4: perform ABC to obtain p̂(θ|u∗)
5: end for
6: let T ∗ = {u∗ ⊂ s∗ such that KL (p̂(θ|s∗)||p̂(θ|u∗)) = 0}
7: return U∗ = argminu∗∈T∗ |u∗|

Algorithm 2: Greedy minimization of I (θ; X |S)
Algorithm 3: Stochastic minimization of I (θ; X |S)
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Addition of statistics in stochastic minimization

In practice we can use different measures. We add the statistic s∗(k)

I if KL(p(θ|s∗(1), . . . , s
∗
(k))||p(θ|s∗(1), . . . , s

∗
(k−1))) ≥ δk where δk is a

threshold (which could in theory be computed by bootstrapping the
data)

I if the Hellinger distance between p̂(θ|s∗(1), . . . , s
∗
(k)) and

p̂(θ|s∗(1), . . . , s
∗
(k−1)) is larger than ε.

Hd(p̂1, p̂2) ≤

√
log(2)

N

n
log

(
2N

δ

)
with probability 1− δ. We denote by n the size of the sample and N
the number of the bins used to compute the empirical distributions.

I tests for independence (KS, Pearson) enable us to compare
p(θ|s∗(1), . . . , s

∗
(k−1)) and p(θ|s∗(1), . . . , s

∗
(k)) and the statistic s∗(k) is

added if the test has a significant p-value
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Relation to previous work

Joyce and Marjoram (2008)

Developed a notion of approximate sufficiency for parameter
inference and a sequential algorithm to score statistics according to
whether their inclusion will improve inference.

Nunes and Balding (2010)

Proposed a heuristic algorithm to minimise the entropy of the
posterior wrt sets of summary statistics. Additionally proposed a
second step where the posterior mean squared error is minimised
over simulated datasets ’close’ to the true data.
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Sufficiency for the joint space

Consider q models each with an associated set of parameters
θi , i ∈ {1, ..., q}. We aim to identify a set of sufficient statistics for
model selection. Let M be a random variable taking value in
{1, . . . , q}.
A statistic, S , is sufficient for model selection if and only if it is
sufficient for the joint space {M, {θi}1≤i≤q} i.e.
I (M, θ1, ...., θq; X |S) = 0.

Result 3

For all deterministic statistics S of X ,

I (M, θ1, ...., θq; X |S) = I (M; X |θ1, ...., θq, S) +
∑

i

I (θi ; X |S)
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Toy example: Model selection for normals with known
variance

We have two models

yM1 ∼ N(θ, σ2
1), yM2 ∼ N(θ, σ2

2)

with σ1 = 0.3 and σ2 = 0.6.
We observe y = (y1, .....y15) from M1(θ = 0) and perform
stochastic minimisation of I (M, θ1, θ2; X |S) with five statistics:

S1 = ȳ , S2 =
∑

(y − ȳ), S3 = range y , S4 = max y , S5 ∼ U(0, 2)

S1 is sufficient for parameter estimation and the pair {S1,S2} is
sufficient for model selection.
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An aside on weighted statistics and distance

In general the distributions of the statistics, p(Si |θ = t), can vary
by orders of magnitude. Thus they must be weighted appropriately
when using Euclidean distance which is impossible a priori.
To circumvent this problem we use as a distance function:

∆(S(x),S(y)) =
∑

i

[log(|Si (x)|)− log(|Si (y)|)]2

=
∑

i

[log(|Si (x)|)/|Si (y)|)]2
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Results: Comparison to true Bayes factor

S st I (θ; X |S) = 0
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Results: Statistics chosen

Statistics chosen for parameter
inference
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Models of random walks

Brownian motion

θ1

θ2

d1

d2

di ∼ N (0, σ)

θi ∼ U(0, 2π)
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Models of random walks

Persistent random walk

θ1

θ2

d1

d2

di ∼ N (0, σ)

θi ∼WrapNorm(θi−1, ρ)
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Models of random walks
Biased random walk

θ1

α

θ2

d1

d2

di ∼ N (0, σ)

θi ∼WrapNorm(α, ρ)
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Summary statistics

I S1: Mean square displacement

I S2: Mean x and y displacement

I S3: Mean square x and y displacement

I S4: Straightness index |u(1)−u(N)|PN
i li

I S5: Eigenvalues of gyration tensor

Tkl =
1

N

N∑
j=1

(rjk− < rk >)(rjl− < rl >)

Chris Barnes Sufficiency for ABC model selection Example: Random walks 19 / 23

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.5

95
2.

1 
: P

os
te

d 
13

 M
ay

 2
01

1



Summary statistics

I S1: Mean square displacement

I S2: Mean x and y displacement

I S3: Mean square x and y displacement

I S4: Straightness index |u(1)−u(N)|PN
i li

I S5: Eigenvalues of gyration tensor

Tkl =
1

N

N∑
j=1

(rjk− < rk >)(rjl− < rl >)

Chris Barnes Sufficiency for ABC model selection Example: Random walks 19 / 23

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.5

95
2.

1 
: P

os
te

d 
13

 M
ay

 2
01

1



Summary statistics

I S1: Mean square displacement

I S2: Mean x and y displacement

I S3: Mean square x and y displacement

I S4: Straightness index |u(1)−u(N)|PN
i li

I S5: Eigenvalues of gyration tensor

Tkl =
1

N

N∑
j=1

(rjk− < rk >)(rjl− < rl >)

Chris Barnes Sufficiency for ABC model selection Example: Random walks 19 / 23

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.5

95
2.

1 
: P

os
te

d 
13

 M
ay

 2
01

1



Summary statistics

I S1: Mean square displacement

I S2: Mean x and y displacement

I S3: Mean square x and y displacement

I S4: Straightness index |u(1)−u(N)|PN
i li

I S5: Eigenvalues of gyration tensor

Tkl =
1

N

N∑
j=1

(rjk− < rk >)(rjl− < rl >)

Chris Barnes Sufficiency for ABC model selection Example: Random walks 19 / 23

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.5

95
2.

1 
: P

os
te

d 
13

 M
ay

 2
01

1



Summary statistics

I S1: Mean square displacement

I S2: Mean x and y displacement

I S3: Mean square x and y displacement

I S4: Straightness index |u(1)−u(N)|PN
i li

I S5: Eigenvalues of gyration tensor

Tkl =
1

N

N∑
j=1

(rjk− < rk >)(rjl− < rl >)

Chris Barnes Sufficiency for ABC model selection Example: Random walks 19 / 23

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.5

95
2.

1 
: P

os
te

d 
13

 M
ay

 2
01

1



Results
S5 (eigenvalues of gyration tensor) is consistently chosen as sufficient for
Brownian and Persistent walks. The biased walk also requires S3 (mean square
x and y displacement) for sufficiency. The pair {S3, S5} is also sufficient for the
joint space.

Start: S = {S1}
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End: S = {S3, S5}

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

σ

σ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

µ

µ

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

ρ

Chris Barnes Sufficiency for ABC model selection Example: Random walks 20 / 23

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.5

95
2.

1 
: P

os
te

d 
13

 M
ay

 2
01

1



Conclusions

I Problems of sufficiency pervade both parameter inference and
model selection problems.

I For any interesting real world problem there no simple
sufficient statistics.

I Information theory allows a disciplined approach to the
construction of sets of statistics that together can be
(approximately) sufficient.

I We have shown that such an approach works in toy models. It
is computationally feasible in more challenging problems.

I If we use the data rather than summary statistics ABC model
selection is straightforward.
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Thanks!

christopher.barnes@imperial.ac.uk
http://www3.imperial.ac.uk/theoreticalsystemsbiology
http://abc-sysbio.sourceforge.net/
http://cuda-sim.sourceforge.net/
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Calculating KL divergence for multivariate distributions

θ1

θ2
u0

DKL(U,V ) ≈ log
NV

NU − 1
+ dEU [log ρk(·,V )]− dEU [log ρk(·,U)]

kNN-based high-dimensional Kullback-Leibler distance for tracking, Boltz et al. WIAMIS’07
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