Considerate approaches to achieving sufficiency for $A B C$ model selection

Chris Barnes, Sarah Filipi, Tom Thorne, Michael Stumpf

Theoretical Systems Biology, Imperial College London

$$
5^{\text {th }} \text { May } 2011
$$

窓ufficient statistics

The Likelihood principle states that all the information about parameter θ is contained in the likelihood function $f(x \mid \theta)$. This principle is complemented by the sufficiency principle. Here a summary statistic of the general form

$$
S: \mathbb{R}^{D} \longrightarrow \mathbb{R}^{w}, S(x)=s
$$

with $w \ll D$ typically, is called sufficient if

$$
f(X \mid S(x)=s, \theta)=f(x \mid S(x)=s)
$$

ie the likelihood is independent of the parameter conditional on the value of the summary statistic. The likelihood can then generally be written in the Neyman-Fisher factorized form

$$
f(X \mid \theta)=g(X) h(S(X) \mid \theta)
$$

where $g(X)$ is independent of the parameter θ. Thus $h(S(X) \mid \theta)$ carries all the information about the parameter

چ㾍BC, sufficient statistics and model selection

Consider a finite set of models $\mathcal{M}=\left\{M_{1}, \ldots, M_{q}\right\}$, each of which has an associated parameter vector $\theta_{m}, 1 \leq m \leq q$. We aim to perform inference on the joint space over models and parameters, (m, θ_{m}).

$$
p(M=m \mid x)=\frac{\int_{\Theta_{m}} f\left(x \mid \theta_{m}\right) \pi\left(\theta_{m}\right) d \theta_{m} \pi(m)}{\sum_{i=1}^{q} \int_{\Theta_{i}} p\left(x \mid \theta_{i}\right) \pi\left(\theta_{i}\right) d \theta_{i} \pi(i)}
$$

We can apply $A B C$ by replacing evaluation of the likelihood in favour of comparing simulated and real data for different parameters drawn from the posterior, whence we obtain

$$
p(M=m \mid x) \approx \frac{\int_{\Theta_{m}} \int_{\Omega} \mathbb{1}(\Delta(x, y) \leq \epsilon) f\left(y \mid \theta_{m}\right) \pi\left(\theta_{m}\right) d \theta_{m} d y \pi(m)}{\sum_{i=1}^{q} \int_{\Theta_{i}} \int_{\Omega} \mathbb{1}(\Delta(x, y) \leq \epsilon) f\left(y \mid \theta_{i}\right) \pi\left(\theta_{i}\right) d \theta_{i} d y \pi(i)},
$$

which is exact once $\epsilon \longrightarrow 0$.

The same is no longer true, however, once the complete data have been replaced by summary statistics. So in general

$$
\begin{gathered}
p(M=m \mid x) \neq \\
\frac{\int_{\Theta_{m}} \int_{\Omega} \mathbb{1}\left(\Delta\left(S_{m}(x), S_{m}(y) \leq \epsilon\right) h\left(S_{m}(y) \mid \theta_{m}\right) \pi\left(\theta_{m}\right) d \theta_{m} d y \pi(m)\right.}{\sum_{i=1}^{q} \int_{\Theta_{i}} \int_{\Omega} \mathbb{1}\left(\Delta\left(S_{i}(x), S_{i}(y)\right) \leq \epsilon\right) h\left(S_{i}(y) \mid \theta_{i}\right) \pi\left(\theta_{i}\right) d \theta_{i} d y \pi(i)} .
\end{gathered}
$$

An equality can only hold if the factors $g_{i}(x), 1 \leq i \leq q$ are all identical. Otherwise the different levels of data-compression are lost and unbiased model selection is no longer possible.


```
M
.. While we do agree that problems arise when using inadequate (or insufficient) statistics for model selection
- this mirrors problems that can also be observed in the parameter estimation context.
```


ABC parameter inference for θ where $\mathbf{y}_{1 \ldots . m} \sim N(\theta=1,1)$ Use as summary statistics: mean, variance, min and max.
$m=10$

$$
m=10000
$$

While we do agree that problems arise when using inadequate (or insufficient) statistics for model selection

- this mirrors problems that can also be observed in the parameter estimation context.
- for many important applications of ABC this problem can be elegantly avoided by using the whole data rather than summary statistics.

률eviving $A B C$ model selection

While we do agree that problems arise when using inadequate (or insufficient) statistics for model selection

- this mirrors problems that can also be observed in the parameter estimation context.
- for many important applications of ABC this problem can be elegantly avoided by using the whole data rather than summary statistics.
- in cases where summary statistics are required we argue that we can construct approximately sufficient statistics in a disciplined manner using notions from information theory. and is defined as follows

$$
H(X)=-\sum_{x} p(x) \log p(x)=-E_{p(X)}[\log p(X)] \geq 0
$$

The conditional entropy $H(Y \mid X)$ is defined as

$$
H(Y \mid X)=-E_{p(X, Y)}[\log p(Y \mid X)] .
$$

The mutual information $I(X ; Y)$ measures the amount of information that Y contains about X. It can be seen as the reduction of the uncertainty of X due to the knowledge of Y :

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y)=\sum_{x, y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \\
& =K L(p(X, Y) \| p(X) p(Y)) \geq 0
\end{aligned}
$$

$I(X ; Y)=0$ if and only if X and Y are independent.

俞ata processing inequality and sufficient statistics

The DPE states that for random variables X, Y, and Z such that $X \rightarrow Y \rightarrow Z$, (i.e. Y depends, deterministically or randomly, on X and Z depends on Y)

$$
I(X ; Y) \geq I(X ; Z)
$$

with equality only if $X \rightarrow Y \rightarrow Z$ forms a Markov Chain which means that $p(X, Z \mid Y)=p(X \mid Y) p(Z \mid Y)$.
Now consider a family of distributions $\left\{f_{\theta}().\right\}$ indexed via θ and let X be a sample from a distribution in this family. Let S be a deterministic statistic of X then $\theta \rightarrow X \rightarrow S$. By the DPE

$$
I(\theta ; S) \leq I(\theta ; X)
$$

A statistic S is said to be sufficient with underlying parameter θ if and only if S contains all the information in X about θ that is

$$
I(\theta ; S)=I(\theta ; X)
$$

变esults for sufficient statistics (1)

The conditional mutual information of discrete random variables X, Y and Z is defined as

$$
I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z) .
$$

It is the reduction in uncertainty of X due to knowledge of Y when Z is given. This quantity is null if and only if X and Y are conditionally independent given Z, which means that Z contains all the information about X in Y.

变esults for sufficient statistics (1)

The conditional mutual information of discrete random variables X, Y and Z is defined as

$$
I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z) .
$$

It is the reduction in uncertainty of X due to knowledge of Y when Z is given. This quantity is null if and only if X and Y are conditionally independent given Z, which means that Z contains all the information about X in Y.

Result 1

S is a sufficient statistic with underlying parameter θ if and only if

$$
I(\theta ; X \mid S)=0 .
$$

This states that conditional on S there is no further information in X on θ.

希esults for sufficient statistics (2)

Suppose that we have a finite set of deterministic statistics $S=\left\{S_{1}, \ldots, S_{n}\right\}$ and assume that S is a sufficient statistic. We aim to identify a subset U of S which is sufficient for θ. The following result characterizes such a subset.

Result 2

Let S be a finite set of deterministic statistics of X and assume that S is a sufficient statistic. Let U be a vector composed of elements of S. The following statements hold

$$
\begin{aligned}
& U \text { is a sufficient statistic } \\
\Leftrightarrow & I(\theta ; S \mid U)=0 \\
\Leftrightarrow & E_{p(X)}[K L(p(\theta \mid S)| | p(\theta \mid U))=0]
\end{aligned}
$$

1: input: a sufficient set of deterministic statistics whose values on dataset is $s^{*}=\left\{s_{1}^{*}, \ldots, s_{n}^{*}\right\}$
2: output: a subset U^{*} of s^{*}
3: for all $u^{*} \subset s^{*}$ do
4: perform ABC to obtain $\hat{p}\left(\theta \mid u^{*}\right)$
5: end for
6: let $T^{*}=\left\{u^{*} \subset s^{*}\right.$ such that $\left.K L\left(\hat{p}\left(\theta \mid s^{*}\right)| | \hat{p}\left(\theta \mid u^{*}\right)\right)=0\right\}$
7: return $U^{*}=\operatorname{argmin}_{u^{*} \in T^{*}}\left|u^{*}\right|$

Algorithm 2: Greedy minimization of $I(\theta ; X \mid S)$
Algorithm 3: Stochastic minimization of $I(\theta ; X \mid S)$

چ
 風ddition of statistics in stochastic minimization

 In practice we can use different measures. We add the statistic $s_{(k)}^{*}$- if $K L\left(p\left(\theta \mid s_{(1)}^{*}, \ldots, s_{(k)}^{*}\right) \| p\left(\theta \mid s_{(1)}^{*}, \ldots, s_{(k-1)}^{*}\right)\right) \geq \delta_{k}$ where δ_{k} is a threshold (which could in theory be computed by bootstrapping the data)
- if the Hellinger distance between $\hat{p}\left(\theta \mid s_{(1)}^{*}, \ldots, s_{(k)}^{*}\right)$ and $\hat{p}\left(\theta \mid s_{(1)}^{*}, \ldots, s_{(k-1)}^{*}\right)$ is larger than ϵ.

$$
H d\left(\hat{p_{1}}, \hat{p_{2}}\right) \leq \sqrt{\log (2) \frac{N}{n} \log \left(\frac{2 N}{\delta}\right)}
$$

with probability $1-\delta$. We denote by n the size of the sample and N the number of the bins used to compute the empirical distributions.

- tests for independence (KS, Pearson) enable us to compare $p\left(\theta \mid s_{(1)}^{*}, \ldots, s_{(k-1)}^{*}\right)$ and $p\left(\theta \mid s_{(1)}^{*}, \ldots, s_{(k)}^{*}\right)$ and the statistic $s_{(k)}^{*}$ is added if the test has a significant p-value

Joyce and Marjoram (2008)

Developed a notion of approximate sufficiency for parameter inference and a sequential algorithm to score statistics according to whether their inclusion will improve inference.

Nunes and Balding (2010)

Proposed a heuristic algorithm to minimise the entropy of the posterior wrt sets of summary statistics. Additionally proposed a second step where the posterior mean squared error is minimised over simulated datasets 'close' to the true data.

Consider q models each with an associated set of parameters
$\theta_{i}, i \in\{1, \ldots, q\}$. We aim to identify a set of sufficient statistics for model selection. Let M be a random variable taking value in $\{1, \ldots, q\}$.
A statistic, S, is sufficient for model selection if and only if it is sufficient for the joint space $\left\{M,\left\{\theta_{i}\right\}_{1 \leq i \leq q}\right\}$ i.e.
$I\left(M, \theta_{1}, \ldots, \theta_{q} ; X \mid S\right)=0$.

Result 3

For all deterministic statistics S of X,

$$
I\left(M, \theta_{1}, \ldots, \theta_{q} ; X \mid S\right)=I\left(M ; X \mid \theta_{1}, \ldots, \theta_{q}, S\right)+\sum_{i} I\left(\theta_{i} ; X \mid S\right)
$$

 Eariance

$$
\mathbf{y}_{M_{1}} \sim N\left(\theta, \sigma_{1}^{2}\right), \mathbf{y}_{M_{2}} \sim N\left(\theta, \sigma_{2}^{2}\right)
$$

$$
\text { with } \sigma_{1}=0.3 \text { and } \sigma_{2}=0.6
$$

We observe $\mathbf{y}=\left(y_{1}, \ldots . y_{15}\right)$ from $M_{1}(\theta=0)$ and perform stochastic minimisation of $I\left(M, \theta_{1}, \theta_{2} ; X \mid S\right)$ with five statistics:

$$
S_{1}=\bar{y}, S_{2}=\sum(y-\bar{y}), S_{3}=\operatorname{range} y, S_{4}=\max y, S_{5} \sim U(0,2)
$$

S_{1} is sufficient for parameter estimation and the pair $\left\{S_{1}, S_{2}\right\}$ is sufficient for model selection.

㓱n aside on weighted statistics and distance

In general the distributions of the statistics, $p\left(S_{i} \mid \theta=t\right)$, can vary by orders of magnitude. Thus they must be weighted appropriately when using Euclidean distance which is impossible a priori. To circumvent this problem we use as a distance function:

$$
\begin{aligned}
\Delta(\mathbf{S}(\mathbf{x}), \mathbf{S}(\mathbf{y})) & =\sum_{i}\left[\log \left(\left|S_{i}(\mathbf{x})\right|\right)-\log \left(\left|S_{i}(\mathbf{y})\right|\right)\right]^{2} \\
& \left.=\sum_{i}\left[\log \left(\left|S_{i}(\mathbf{x})\right|\right) /\left|S_{i}(\mathbf{y})\right|\right)\right]^{2}
\end{aligned}
$$

ㅋল esults: Comparison to true Bayes factor

0	
$\stackrel{0}{0}$	
\cdots	S st $I(\theta ; X \mid S)=0$

S st $I(M, \theta ; X \mid S)=0$

${\underset{\sim}{\infty}}_{\underset{\sim}{*}}^{\infty} e s u l t s: ~ s t a t i s t i c s ~ c h o s e n ~$ $\stackrel{\square}{\square}$

Statistics chosen for parameter inference

Additional statistics chosen for model selection

odels of random walks

odels of random walks

$\sum_{\substack{\pi}}^{\infty}$

O

$\sum_{\substack{\text { ®umm }}}^{\infty}$
S_{1} : Mean square displacement
S_{2} : Mean x and y displacement
$\sum_{\substack{\text { ®umm }}}^{\infty}$
S_{1} : Mean square displacement
S_{2} : Mean x and y displacement
S_{3} : Mean square x and y displacement
\sum_{n}^{∞} ๗mmmary statistics
0
0
0
0
0
S_{1} : Mean square displacement
of S_{2} : Mean x and y displacement
S_{3} : Mean square x and y displacement
S_{4} : Straightness index $\frac{|\mathbf{u}(1)-\mathbf{u}(N)|}{\sum_{i}^{N} I_{i}}$
$\sum_{\substack{*}}^{\gtrless}$

0
0
0
0

S_{1} : Mean square displacement
́ㅗㅇ S_{2} : Mean x and y displacement
S_{3} : Mean square x and y displacement
ㄷ. S_{4} : Straightness index $\frac{|\mathbf{u}(1)-\mathbf{u}(N)|}{\sum_{i}^{N} I_{i}}$
S_{5} : Eigenvalues of gyration tensor

$$
T_{k l}=\frac{1}{N} \sum_{j=1}^{N}\left(r_{j k}-<r_{k}>\right)\left(r_{j l}-<r_{l}>\right)
$$

$\stackrel{\star}{\infty} \mathrm{m} e s u l t s$

S_{5} (eigenvalues of gyration tensor) is consistently chosen as sufficient for Brownian and Persistent walks. The biased walk also requires S_{3} (mean square x and y displacement) for sufficiency. The pair $\left\{S_{3}, S_{5}\right\}$ is also sufficient for the joint space.

End: $S=\left\{S_{3}, S_{5}\right\}$

- Problems of sufficiency pervade both parameter inference and model selection problems.
- For any interesting real world problem there no simple sufficient statistics.
- Information theory allows a disciplined approach to the construction of sets of statistics that together can be (approximately) sufficient.
- We have shown that such an approach works in toy models. It is computationally feasible in more challenging problems.
- If we use the data rather than summary statistics $A B C$ model selection is straightforward.

Thanks!

christopher.barnes@imperial.ac.uk

http://www3.imperial.ac.uk/theoreticalsystemsbiology
http://abc-sysbio.sourceforge.net/
http://cuda-sim.sourceforge.net/

