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Summary:  Both fluctuations and distributions of spontaneous neural spiking activity have been observed to 

closely follow a variety of power laws.  Multiple explanations have been offered for each observation, but few 

lead to mechanisms that encompass their widespread occurrence.  Criticality is one theoretical principle that has 

the potential to encompass the generality of power laws in spiking activity.  However, to apply it, a plausible 

mechanism is needed to maintain spike dynamics near a critical point.  This mechanism should be generally 

adaptive to explain its apparent widespread occurrence. 

 A canonical, leaky integrate-and-fire model is presented in which a form of synaptic timing-dependent 

plasticity is used to maintain a state of critical branching.  When a presynaptic neuron spikes, some number of 

spikes may occur afterwards over its postsynaptic connections.  The critical branching point is a balance in the 

proportion of presynaptic to postsynaptic spikes such that               .  All neuronal and synaptic 

variables are updated in continuous time (using asynchronous, spike event-based simulation), using only current 

values of local variables.  Postsynaptic spikes are weighted by a pre-post synaptic timing factor, and summed 

within each interspike interval.  Each sum serves as a spatially and temporally local branching ratio estimate.  

For both excitatory and inhibitory units, critical branching is achieved by probabilistically potentiating post-

synapses when a unit’s branching ratio estimate is above unity, and de-potentiating when below unity. 

 Results showed that 1) the self-tuning algorithm maintained critical branching under a range of 

parameters; 2) power laws were obtained in spiking activity fluctuations (1/f scaling), size distributions of 

network bursts (neural avalanches), and temporal correlations in interspike intervals (Allan factor); 3) power 

laws disappeared once the self-tuning algorithm was disabled; and 4) critical branching was adaptive in that it 

maximized the network’s memory capacity when assessed as a liquid state machine. 

Membrane potentials were updated for each synaptic or external input Ij by j
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, where t` was 

time of previous update. If Vi  > θi, then Vi0, and Ik = wk for all post-synaptic connections k at delay times t + 

τk.  For each first post-synaptic spike after a given pre-synaptic spike on unit i, Npost,i was incremented by 
)'( ttie

 .  For each ISI, update wk if Npost,i ≠ 1 with probability   UNsf iposti /1,  , where η is a tuning rate, U is 

the number of synapses available for (de)potentiation, and f(si) is a function of time since last spike. 
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Memory Capacity: Shown to be equivalent 

to Bertschinger and Natschläger’s (2004) 

liquid state results at critical branching, 

where memory and separation of inputs 

was tested using delayed XOR test 

functions and linear classification. 

Example power law: Spectral analysis of fluctuations in number 

of spikes per unit time interval, with self-tuned critical branching 

algorithm on (green) versus off (blue).  Analogous results were 

obtained for neural avalanches and interspike intervals. 

   

  

   

    
       

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.5

89
3.

1 
: P

os
te

d 
9 

A
pr

 2
01

1

mailto:ckello@ucmerced.edu
mailto:bkerster@ucmerced.edu

