$_1$ Replacement and late formation of atmospheric \mathbf{N}_2 on	
2	undifferentiated Titan by impacts
3	
4	Yasuhito Sekine ¹ , Hidenori Genda ² , Seiji Sugita ¹ ,
5	Toshihiko Kadono³, Takafumi Matsui⁴
6	
7	¹ Department of Complexity Science & Engineering, University of Tokyo
8	5-1-5 Kashiwanoha, Kashiwa 277-8561 Japan
9	
10	² Department of Earth & Planetary Science, University of Tokyo
11	7-3-1 Hongo Bunkyo 113-0033 Japan
12	
13	³ Institute of Laser Engineering, Osaka University
14	2-6 Yamadaoka, Suita 565-0871 Japan
15	
16	⁴ Planetary Exploration Research Center, Chiba Institute of Technology
17	2-17-1 Tsudanuma, Narashino 275-0016 Japan
18	
19	Submitted to Nature Geoscience as a Letter
20	
21	

1Saturn's moon, Titan, has remarkable surface features—a massive N_2 atmosphere and 2hydrological cycle of CH_4 —that are often compared with that of Earth¹. However, the 3origin and evolution of Titan's atmosphere remains largely unknown. The proposed 4formation mechanisms for Titan's N₂ require a prolonged, warm proto-atmosphere during 5accretion²⁻⁴. These mechanisms accordingly would not have worked efficiently if Titan 6stayed cold, as indicated by the incompletely differentiated interior observed by Cassini⁵. 7Because formation of a massive secondary atmosphere on a planetary body would 8associate with a major differentiation of its sold body during accretion⁶⁻⁸, the presence of 9such an atmosphere on undifferentiated cold Titan poses a serious dilemma on our view of 10how planetary bodies develop atmospheres. Here we propose a new mechanism for the 11post-accretion formation of Titan's N₂ to resolve this problem: conversion and 12replenishment of N₂ from NH₃ contained in Titan by impacts during the late heavy 13bombardment (LHB)⁹. Our results show that Titan, regardless of its thermal history, 14would acquire sufficient N₂ to account for the current atmosphere during the LHB and 15that most of the pre-LHB atmosphere would have replaced by impact-induced N₂. This is 16the first scenario capable of generating a N₂-rich and nearly primordial Ar-free 17atmosphere on undifferentiated cold Titan. We also suggest that Titan's N₂ was delivered 18 from a different source in the solar nebula compared with Earth and that the origins of N₂

1on Titan and Triton are fundamentally different with that of N₂ on Pluto.

2 Why Titan possesses a massive N₂ atmosphere is a longstanding question. One of the 3most important constraints on the origin of Titan's atmosphere is perhaps the low abundance of 4primordial Ar^{10} (³⁶ $Ar/N_2 \approx 2.8 \times 10^{-7}$) observed by Cassini–Huygens, suggesting that Titan's N₂ 5is of secondary origin, as with N₂ on Earth. If Titan's N₂ had been originated directly from the 6solar nebula, significant amounts of ³⁶Ar would have been present in the satellitesimals that 7formed Titan⁸ (³⁶ $Ar/N_2 \approx 10^{-1}$ to 10^{-2}). Therefore, the above observation suggests that N₂ was 8delivered to Titan in a less-volatile form, probably NH₃^{8,11,12}.

9 Previous studies have proposed three mechanisms for the conversion of NH_3 to N_2 : 10photolysis², atmospheric shock heating³, and endogenic⁴. However, there is at least one critical 11problem with these mechanisms: they all require a 'warm Titan' during its early history. For 12photolysis and shock heating, Titan would have required a prolonged, thick and warm NH_3 13proto-atmosphere generated by substantial melting and vapourization of surface materials during 14accretion^{7,8}, which would have resulted in the rock–ice differentiation required for the 15production of endogenic N_2^4 . However, recent gravitational data from Cassini⁵ reveal that Titan's 16interior is incompletely differentiated, suggesting that substantial melting and vapourization 17would have been unlikely^{7,13}. Consequently, the proto-atmosphere would have been tenuous and 18short-lived^{7,13}, meaning in turn that photolysis and shock heating are unlikely to have been 1effective in converting NH₃ into N₂.

We investigate the importance of post-accretion exogenic events in converting NH₃ to 3N₂, especially cometary impacts during the LHB, which occurred at ~3.9 billion years ago⁹. 4Given both a high impact velocity ($v_{imp} \approx 11 \text{ km/s}^{14}$) and a large total impactor mass (~3 × 10²⁰ 5kg¹³, compared to ~5 × 10¹⁹ kg after the LHB¹⁴), the LHB would have been one of the most 6energetic events affecting Titan, as well as the other large icy satellites. Although the direct 7delivery of N₂ from comets has been proposed¹⁵, a key factor in explaining the low ³⁶Ar/N₂ ratio 8in Titan's atmosphere is the decomposition of NH₃ contained in Titan as a consequence of 9impacts. However, a lack of experimental studies of impact-induced N₂ formation has prevented 10investigating quantitatively the effect of the LHB on the origin of Titan's N₂.

In the present study, we conducted impact experiments to determine the efficiency of $12N_2$ production from ammonium hydrate (NH₃–H₂O) ice. Because of both the difficulties in direct 13measurements of impact-induced gas species due to chemical contamination (such as, gun debris 14and combustion gases) by powder and light-gas guns and in the preparation of ice targets, 15impact chemistry of planetary ices has been poorly investigated. We develop a new experimental 16system: a chemically clean technique to accelerate projectiles with a high-energy laser pulse 17(laser gun) combined with isotopic-labelling and target-preparation techniques for ¹⁵NH₃–H₂O 18ice (see Methods). This experimental system allows us to quantify impact-induced N₂

1production via measurements of ¹⁵N₂ with mass spectrometry.

Figure 1 shows the results of experiments on the efficiency of impact-induced N₂ 3production from NH_3 – H_2O ice as a function of peak shock pressure. The efficiency exhibits a 4linear increase as a function of pressure. Based on a linear fit to the experimental data, we 5obtained peak shock pressures for incipient and complete N₂ degassing at ~8 and ~23 GPa, 6respectively. This figure also indicates that N₂ production efficiency does not depend on the NH₃ 7 concentration in the target very much, suggesting that the experimental data are applicable to 8planetary impacts of icy materials with various NH₃ concentrations. The present result suggests 9that impact-induced N₂ conversion proceeds efficiently in cometary impacts on Titan, but is 10inefficient in satellitesimal impacts during accretion (Fig. 1).

11 Based on the present experimental results, we calculated the N_2 supplied by a cometary 12impact on Titan, based on numerical impact simulations using a three-dimensional smoothed-13particle-hydrodynamics (SPH) method (Supplementary Information). The mass for partial and 14complete N₂ degassing in the target reaches ~8 times the impactor mass. More than 90% of 15supplied N₂ is derived from the dissociation of NH₃ in Titan, when the concentrations of NH₃, $16n_{\rm NH3}$, in both the impactor and target are the same. To investigate the evolution of Titan's N₂ 17 inventory during the LHB, we conducted a one-box model calculation considering the impact1distributed in the atmosphere and surface based on the saturation vapour pressure of N₂ at a 2given surface temperature¹⁵. We take into account the loss of atmospheric N₂ by subsequent 3impacts, using the atmospheric–erosion model given by three-dimensional multi-material 4hydrocode calculations¹⁶, and the impact-induced ballistic escape of surface N₂ ice, based on the 5present SPH results (Supplementary Information).

6 We consider two extreme primordial Titans as initial conditions: an airless cold Titan 7and a relatively warm Titan, as proposed previously, with substantial N₂ and CH₄ on its surface¹⁷. 8Even if Titan starts with an airless, cold environment (surface temperature $T_{surf} \approx 60$ K), its N₂ 9inventory reaches a pressure of one to several bars in the LHB aftermath, depending on n_{NH3} on 10Titan and impactor radius r_p (Fig. 2a). Accumulation of the current N₂ inventory on a cold Titan 11requires only 1–2% of n_{NH3} on Titan (Figs 2a and 3), which is consistent with both the proposed 12 n_{NH3} level in the satellitesimals that formed the Saturnian system (~0.5–4.5%)^{11,12} and constraints 13from Enceladus' plume (~1–4%; see the caption to Fig. 3)¹⁸.

If Titan possessed substantial N_2 and CH_4 before the LHB, impacts would have 15replaced most of the preexisting atmosphere during the LHB. A relatively high T_{surf} (~70–85 16K)¹⁷, resulting from greenhouse effects, would have increased the mass of the atmosphere, 17leading in turn to efficient atmospheric erosion. The present results suggest that efficient 18atmospheric erosion would have resulted in the loss of most of the pre-existing N_2 during the 1LHB, and impact-induced N₂ would have become dominant in the aftermath of the LHB (Fig. 22b). To accumulate the current N₂ inventory on a warm Titan, n_{NH3} on Titan would have been $3\sim2-4\%$ (Fig. 3), which is also within the range of the proposed n_{NH3} in satellitesimals, although 4close to the upper limit. Such a n_{NH3} might have been achieved in the NH₃-rich ocean beneath 5Titan's surface^{5,8}. Alternatively, CH₄ may have been lost as a result of impacts, which would 6have led to a decline in T_{surf} and accumulation of N₂. Based on these results, we conclude that 7Titan acquired significant N₂ during the LHB.

8 The proposed scenario of the replacement of the atmosphere may provide a clue to an 9issue related to the abundance of ³⁶Ar in Titan's atmosphere. Although the low ³⁶Ar/N₂ ratio is 10consistent with a non-primordial origin of N₂, the nebular–clathration models do not clearly 11explain the present abundance of ³⁶Ar (no ³⁶Ar¹² or some higher ³⁶Ar abundance¹¹). Based on our 12scenario, even if primordial ³⁶Ar had been in the preexisting atmosphere, most of it would have 13been lost during the LHB. Consequently, the ³⁶Ar abundance would have approached to a value 14balanced by the input and output by impacts during the LHB. The present results suggest that a 15few percent of Titan's N₂ originated from cometary NH₃. To achieve the measured ³⁶Ar/N₂ ≈ 2.8 16× 10⁻⁷ by cometary ³⁶Ar, the ³⁶Ar/H₂O ratio in comets would have to be ~10⁻⁸ for an NH₃/H₂O 17value in comets of ~1%¹⁹. This ³⁶Ar/H₂O ratio is consistent with predictions of a nebular– 18clathration model for some comets²⁰, which explains the observed depletion of N₂ with respect

1to CO.

2 Moreover, our experimental results are useful for investigations of impact-induced 3alterations on other icy satellites and dwarf planets. Owing to the strong gravity of gas giants, 4comets collide onto icy satellites with high velocities $(v_{imp} \approx 6-60 \text{ km/s})^{14}$. Figure 1 suggests that 5 simplex at $v_{imp} > 6$ km/s efficiently dissociate NH₃ on the surface, which may explain the 6absence of any clear evidence for surface NH₃ on Saturnian mid-sized icy satellites²¹, in contrast 7to NH₃ detected in Enceladus' plume from its interior¹⁸. Impact-induced N₂ conversion also 8would occur efficiently on Triton. Our calculation suggests that Triton's N₂ inventory reached 9~10¹⁸ kg in the LHB aftermath (Supplementary Information), consistent with the proposed 10surface N_2 mass (~10¹⁶-10¹⁹ kg)²². In contrast to icy satellites, impact-induced chemical 11alteration of NH₃ is highly inefficient on dwarf planets because of low impact velocities¹⁴ (Fig. 121), suggesting that Pluto's N₂ is not impact-induced secondary material. This view is consistent 13with NH₃ detected on Charon²³. Our results suggest that the origin of N₂ on Triton is different to 14that of Pluto's, even though both of these icy bodies have similar, N₂-dominated atmospheres.

Although our interpretations can explain the observations consistently, one important 16question remains unsolved: the high ${}^{15}N/{}^{14}N$ ratio in Titan's N₂ (~5.5 × 10⁻³)¹⁰ relative to that of 17Earth (~3.7 × 10⁻³). If the above scenario is correct, the high ${}^{15}N/{}^{14}N$ ratio is primordial, 18regardless of whether hydrodynamic escape induced fractionation in Titan's early history²⁴ or 1not²⁵. We consider that the possible large-scale heterogeneity in the nitrogen isotope in the Solar 2System²⁶ might be interpreted in the similar framework as proposed for explaining that in the 3oxygen isotope^{27,28}. Low temperature ion-molecule reactions²⁹ and N₂ self-shielding³⁰ would 4have formed ¹⁵N-enriched NH₃ ices in the molecular cloud and solar nebula. In the outer solar 5nebula, the NH₃ ices in dust grains were not isotopically exchanged with ¹⁵N-depleted protosolar

 $6N_2 \text{ gas}^{26}$ at least until the Saturn-forming region. In contrast, Earth's N_2 may have largely come 7 from another light N source, such as N components associated with graphite and metal in 8 chondrites $({}^{15}N/{}^{14}N \approx (3.4 \pm 0.7) \times 10^{-3})^{26}$, which may have exchanged with the protosolar gas 9 and vapourized NH₃ in the inner solar nebula²⁶. We predict that ${}^{15}N/{}^{14}N$ values in NH₃ in comets 10 and Enceladus' plume would be as high as that of Titan's N₂. Measurements of these values by 11 large telescopes and future planetary missions would advance our understanding of the origin 12 and distribution of volatiles in the Solar System.

13

14**Methods**

15The laser gun uses a high-energy laser pulse (a Nd:YAG (oscillator) and Glass (amplifier) laser 16with energy of ~10–40 J and laser spot diameter of ~800 μ m) for acceleration of a projectile. A 17laser pulse was irradiated on a gold (Au), platinum (Pt), or cupper (Cu) foil (thickness of 2.5 and 1810.0 μ m for Au, 5.0 μ m for Pt, and 3.0 μ m for Cu) set in a vacuum chamber (Supplementary

1Fig. 1). The laser pulse vaporized the front surface (~1 µm) of metallic foil and generated a 2plasma vapor plume. The rear side of metallic foil was then accelerated by the reaction of the 3expanding plasma vapor and collided on an NH₃-H₂O ice target. We used an isotopic-labelling 4technique for NH₃–H₂O (i.e., ¹⁵NH₃–H₂O) ice to distinguish impact-induced gas species from 5laser-induced contaminated gas species. An ¹⁵NH₃–H₂O ice target was produced by cooling 100 6µl of liquid ¹⁵NH₃ solution in H₂O at ~80 K. A fresh surface of ¹⁵NH₃–H₂O ice appeared in the 7vacuum chamber immediately before impact (Supplementary Fig. 2). The gas species formed by 8 impacts were analysed with a quadrupole mass spectrometer (QMS) connected with the vacuum 9chamber. We obtained the amount of N₂ production by measuring the QMS signal for ¹⁵N₂ after 10impact (Supplementary Fig. 3). Impact velocities and peak shock pressures achieved by the 11 impacts were calculated by an empirical equation and the one-dimensional impedance-match 12solution with the planar-impact approximation based on the Hugoniot equations, respectively. 13Full methods and any associated references are available in Supplementary Information.

14

15References

- 161. Lunine, J. I. & Atreya, S. K. The methane cycle on Titan. *Nature Geosci.* 1, 159–164 (2008).
- 172. Atreya, S. K., Donahue, T. M. & Kuhn, W. R. Evolution of a nitrogen atmosphere on Titan.
- 18 Science **201**, 611–613, (1978).
- 193. McKay, C. P., Scattergood, T. W., Pollack, J. B., Borucki, W. J. & van Ghyseghem, H. T.

High-temperature shock formation of N₂ and organics on primordial Titan. *Nature* 332,
 520–522 (1988).

11

34. Glein, C. R., Desch, S. J. & Shock, E. L. The absence of endogenic methane on Titan and its

4 implications for the origin of atmospheric nitrogen. *Icarus* **204**, 637–644 (2009).

55. Iess, L. et al. Gravity field, shape, and moment of inertia of Titan. Science 327, 1367–1369

6 (2010).

76. Abe Y., Ohtani, E., Okuchi, T., Righter, M. & Drake, M. in Origin of the Earth and Moon

8 (eds. Canup, R. M. & Righter, K.) (Univ. Arizona Press, Tucson, 413–433, 2000).

97. Kuramoto K. & Matsui, T. Formation of a hot proto-atmosphere on the accreting giant icy

10 satellite: implications for the origin and evolution of Titan, Ganymede, and Callisto J.

11 Geophys. Res. 99, 21,183–21,200 (1994).

128. Lunine, J. I., Choukroun, M., Stevenson, D. & Tobie, G. in Titan from Cassini-Huygens (eds.

13 Brown R. H., Lebreton, J-P. & Waite, J. H.) 35–59 (Springer, New York, 2009).

149. Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late

15 Heavy Bombardment period of the terrestrial planets. *Nature* **435**, 466–469 (2005).

1610. Niemann, H. B. et al. The abundances of constituents of Titan's atmosphere from the GCMS

17 instrument on the Huygens probe. *Nature* **438**, 779–784 (2005).

1811. Alibert, Y. & Mousis, O. Formation of Titan in Saturn's subnebula: constraints from Huygens

11

19 probe measurements. Astronom. Astrophys. 465, 1051–1060 (2007).

- 112. Hersant, F., Gautier, D., Tobie, G. & Lunine, J. I. Interpretation of the carbon abundance in
- 2 Saturn measured by Cassini. *Planet. Space Sci.* **56**, 1103–1111 (2008).
- 313. Barr, A. C., Citron, R. I. & Canup, R. M. Origin of a partially differentiated Titan. Icarus (in

4 the press).

- 514. Zahnle, K., Schenk, P. M. & Levison, H. F. Cratering rates in the outer solar system. *Icarus* **163**, 263–289 (2003).
- 715. Griffith, C. A. & Zahnle, K. Influx of cometary volatiles to planetary moons: the
 atmospheres of 1000 possible Titans. *J. Geophys. Res.* 100, 16,907–16,922 (1995).
- 916. Shuvalov, V. Atmospheric erosion induced by oblique impacts. Meteoritic Planet. Sci. 44,

10 1095–1105 (2009).

1117. Lorentz, R. D., McKay, C. P. & Lunine, J. I. Analytical investigation of climate stability on

12 Titan: sensitivity to volatile inventory. *Planet. Space Sci.* 47, 1503–1515 (1999).

1318. Waite, J. H. et al. Liquid water on Enceladus from observations of ammonia and ⁴⁰Ar in the

14 plume. *Nature* **460**, 487–490 (2009).

1519. Bockelée-Morvan, D., Crovisier, J., Mumma, M. J. & Weaver, H. A. in Comets II (eds.

- Festou, M. C., Keller, H. C. & Weaver, H. A.) 391–423 (Univ. Arizona Press, Tucson,
 2004).
- 1820. Iro, N., Gautier, D., Hersant, F., Bockelée-Morvan, D. & Lunine, J. I. An interpretation of
- 19 the nitrogen deficiency in comets. *Icarus* **161**, 511–532 (2003).

121. Cruikshank, D. P. et al. A spectroscopic study of the surfaces of Saturn's large satellites: H₂O

2 ice, tholin, and minor constituents. *Icarus* **175**, 268–283 (2005).

322. McKinnon, W. B., Lunine, J. I. & Banfield, D. in Neptune and Triton (ed. Cruikshank, D. P.)

4 807–877 (Univ. Arizona Press, Tucson, 1995).

523. Brown, M. E. & Calvin, W. M. Evidence for crystalline water and ammonia ices on Pluto's

6 satellite Charon. *Science* **287**, 107–109 (2000).

724. Penz, T., Lammer, H., Kulikov, Yu. N. & Biernat, H. K. The influence of solar particle and

8 radiation environment on Titan's atmosphere evolution. *Adv. Space Res.* 36, 241–250
9 (2005).

1025. Mandt, K. E. et al. Isotopic evolution of the major constituents of Titan's atmosphere based

11 on Cassini data. *Planet. Space Sci.* 57, 1917–1930 (2009).

1226. Marty, B. et al. Nitrogen isotopes in the recent solar wind from the analysis of Genesis

13 targets: Evidence for large scale isotope heterogeneity in the early solar system. *Geochim*.

14 Cosmochim. Acta **74**, 340–355 (2010).

1527. Yurimoto, H. & Kuramoto, K. Molecular cloud origin for the oxygen isotope heterogeneity

16 in the Solar System. *Science* **305**, 1763–1766 (2004).

1728. Lyons, J. R. & Young, E. D. CO self-shielding as the origin of oxygen isotope anomalies in

18 the early solar nebula. *Nature* **435**, 317–320 (2005).

1929. Charnley, S. B. & Rodgers, S. D. The end of interstellar chemistry as the origin of nitrogen

1 in comets and meteorites. *Astrophys. J.* **569**, L133–L137 (2002).

230. Lyons, J. R. *et al.* Timescales for the evolution of oxygen isotope compositions in the solar

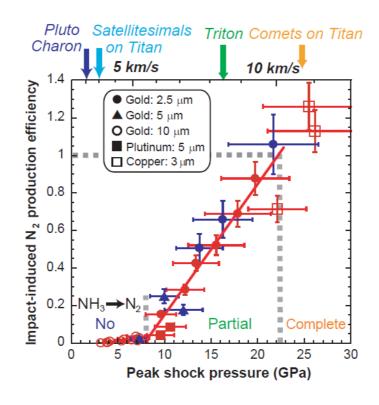
3 nebula. *Geochim. Cosmochim. Acta* **73**, 4998–5017 (2010).

Acknowledgements This study was supported by Grant in Aid from Japan Society for the 6Promotion of Science and the Mitsubishi Foundation. Y.S. thank K. Kuramoto, K. Hamano, C. 7P. McKay, and D. F. Strobel for helpful discussion; S. Fukuzaki for help in the experiments.

Author Contributions Y.S. designed the ice target system in the experiments, performed the 10experiments, modeled Titan's N₂ inventory, and wrote the manuscript. H.G. performed the SPH 11simulations. T.K. designed the laser gun system. All authors vigorously debated and contributed 12intellectually to the interpretation of the results.

Additional Information The authors declare no competing financial interests. Supplementary 15Information accompanies this paper on www.nature.com/naturegeoscience. Reprints and 16permissions information is available online at http://npg.nature.com/reprintsandpremissions. 17Correspondence and requests for materials should be addressed to Y.S.

Figure legends


3Figure 1. Efficiency of impact-induced N₂ production from NH₃–H₂O ice for different NH₃
contents (red: 50%; blue: 10%) (Symbols; see Methods). The vertical axis represents
the amount of N₂ produced by impacts normalized by that contained in the isobaric core of
the target as NH₃. The top axis represents the impact velocity of the H₂O–ice collision,
which generates the peak shock pressure shown on the bottom axis (Supplementary
Information). Arrows represent the average impact velocities onto icy planetary bodies¹⁴.

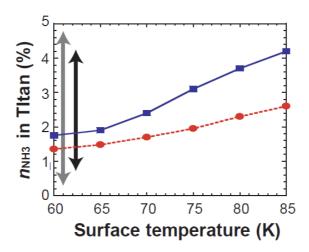
10Figure 2. Evolution of Titan's N2 inventory during the LHB. Vertical dashed lines and11horizontal yellow lines show the proposed LHB mass and current N2 inventory,12respectively. The concentration of NH3, n_{NH3} , in comets is assumed to be $1\%^{19}$. a, Cold13Titan for different n_{NH3} values on Titan and impactor radius, r_p (20 and 30 km)¹³. b, Titan14possessing N2 (1.4 bar) before the LHB¹⁷ for the surface temperature, $T_{surf} = 75$ K and 8515K, at n_{NH3} abundances of 3.0% and 4.3%, respectively ($r_p = 20$ km).

17Figure 3. The concentration of NH₃, *n*_{NH3}, on Titan required for accumulating 1.5 bar of N₂
 for various surface temperatures at impactor radius of 20 km (blue line) and 30 km

(red line). Black and grey arrows represent the possible ranges of n_{NH3} in satellitesimals that formed Saturnian satellites, as proposed by nebular models^{11,12} and constrained from observations of Enceladus' plume¹⁸, respectively. n_{NH3} in Enceladus' plume is ~1%¹⁸, which provides a lower limit to n_{NH3} in the satellitesimals. In the case that the plume contains ~1% of N₂¹⁸, which formed from NH₃, an upper limit of the initial n_{NH3} in the satellitesimals becomes ~4%.

Figures

(Figure 1)



2

3 4

a^{2.5} = 20 km = 30 km rp 2 2% 1.5 1.5% N₂ amount on Titan (bar) 1 0.5 Titan 1% n_{NH3} in 0 2 b *T*_{surf} = 75 K Total *T*_{surf} = 85 K 1.5 mpact-induced 1 0.5 Preexisting 0 1×10²⁰ 2×10²⁰ 3×10²⁰ 4×10²⁰ 0 Cumulative impactor mass (kg) (Figure 2)

